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ABSTRACT

We re-define multimodality and introduce a simple approach
to multimodal and arbitrary style transfer. Conventionally,
style transfer methods are limited to synthesizing a determin-
istic output based on a single style, and there has been no
work that can generate multiple images of various details, or
multimodality, given a single style. In this work, we explore
a way to achieve multimodal and arbitrary style transfer by
injecting noise to a unimodal method. This novel approach
does not require any trainable parameters, and can be readily
applied to any unimodal style transfer methods with separate
style encoding sub-network in literature. Experimental results
show that while being able to transfer an image to multiple
domains in various ways, the image quality is highly compet-
itive with contemporary models in style transfer.

Index Terms— Image style transfer, convolutional neural
network, deep learning.

1. INTRODUCTION

Image style transfer, which concerns with applying the look
of an image to another, has become an increasingly active
topic. The need for such an application arises naturally as
users may not simply want their photos to be realistic but have
an artistic or vintage look from famous paintings as well.

The concept of transferring texture from an image to an-
other was introduced by Hertzman et al. [1], but the method
considers only low-level feature transfer. The first study that
brought deep learning into the picture is perhaps DeepDream
[2]. Later, Gatys et al. [3] proposed a deep-learning-based
method producing more realistic stylized images and showed
that deep convolutional neural networks (CNNs) can sepa-
rate style and content of an image in feature space. How-
ever, despite its good performance, the online optimization is
frustratingly long. To speed up the transfer time, subsequent
works [4] designed end-to-end learning architectures that per-
form optimization offline, and the final models can do infer-
ence even in real time. Li et al. [5] presented a whitening and
coloring transform in the latent space of an autoencoder and
the latent representations of the input and style can be blended
to produce the stylized output. Luan et al. [6] focused on how
to transfer photographic styles to other images. Dumoulin
et al. [7] proposed conditional instance normalization for im-

age style transfer, which is subsequently refined and upgraded
in [8] as adaptive instance normalization (AdaIN). All these
methods mainly deal with unimodal style transfer, meaning
that given a style image and a target, only one output having
the texture of the style and content of the target is produced.

There are several works concerning with multiple styles
and multiple outputs in literature. Wang et al. [9] proposed
to blend multiple styles into an image, but their method can
work with only a fixed set of styles. Recently, in cross-domain
image translation, Huang et al. [10] presented a one-to-many
mapping CNN model that deals with synthesizing multiple
outputs given a single input. However, the number of domains
are limited to only two.

In this work, we re-define multimodality and consider a
different scenario in style transfer. Since aesthetic preference
may differ from user to user, a deterministic output may not
satisfy a wide range of users. Ideally, given a target image
and a style image, it is favorable that there are multiple gen-
erated image candidates which bear the same style but dif-
ferent color, edge, and some detail information so the users
can select the best one based on their preferences. To our
knowledge, this is the first work to consider such a scenario.
To achieve the multimodality property, based on the work of
Huang et al. [8], we explore a MULtimodal and ARbitrary
style transfer module (MULTAR) which injects noise into the
style encoder to produce outputs with varied details. Our con-
tribution is two-fold: (1) we gain an insight into understand-
ing how AdaIN transfers style in feature space and based on
the analysis, (2) we propose a simple yet powerful method
that helps a unimodal style transfer to be able to generate
multiple outputs with slightly different characteristics. Our
approach is flexible and can be easily incorporated into any
system having a separate style encoding branch. Experiments
suggest that our model can produce various features in the
output image given a single style input.

2. ADAPTIVE INSTANCE NORMALIZATION FOR
STYLE TRANSFER

Since our work is an extension of the AdaIN method [8], we
briefly summarize the key idea in this section. The overview
of the method is shown in Fig. 1. Let us call the VGG19 [11]
encoder as f(.) and the decoder as g(.). Let us also denote the
input image and style image as x and y, respectively. AdaIN
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Fig. 1. Overview of the AdaIN method [8], which is also the
backbone of our proposed model. Figure is reproduced from
the original paper.

Fig. 2. In AdaIN, the input feature map (blue cloud) is first
normalized to a unit Gaussian (purple cloud), and then pro-
vided with the mean and variance of the style feature map
(red cloud) to become a new representation (yellow cloud) in
feature space.

takes two 2D feature maps, and performs normalization on
one input, but then uses the statistics of the other input to
scale and shift the normalized input instead of using learnable
parameters like the usual instance normalization. Mathemati-
cally, AdaIN is defined as

AdaIN(u, v) = σ(v)
u− µ(u)
σ(u)

+ µ(v), (1)

where µ(.) and σ(.) extract the spatial first- and second-order
statistics of the input feature maps u and v. In the implemen-
tation, we perform AdaIN(f(x), f(y)). The AdaIN module
is followed by a generator to synthesize the style-transferred
image x̂ = g(AdaIN(f(x), f(y))). The method by design,
however, allows only transfer of the style from an image to
another. Because of the impressive performance of AdaIN, in
this study, we extend this method so that it is able to synthe-
size diverse-style outputs based on a single style image.

Before going into details, we present an analysis that leads
to the inception of the proposed method. As indicated in [8],
style transfer can be done by transferring the statistics be-
tween the feature maps of an input and a style image. Visu-
ally, the process can be illustrated as in Fig. 2, which shows
the re-normalization of an input feature map (blue cloud) us-
ing the statistics of a style feature map (red cloud). We con-
jecture that by shifting the point cloud to a new position, the

output (green cloud) can represent a new style (for e.g., a thick
stroke), and by scaling the map, the network can control the
influence of that style in the result (for e.g., how dominant
it is compared to other features). Thus, modifying the scales
and preserving the means of the feature maps can produce dif-
ferent features without distorting the given style. Moreover,
from the feature space point of view, a linear combination of
feature map is as good as the natural basis because it is the
feature space that contains semantic information rather than
each individual unit [12]. Having these insights, in order to
produce different characteristics in the outputs, we can utilize
different combinations of the style feature maps encoded by
the VGG19 encoder. In the following section, we present a
novel approach to execute that idea.

3. MULTAR

3.1. Proposed model

In Section 2, we hypothesize that changing the variances of
the feature maps can result in different details in the output
images. However, a naive scaling would lead to a network
breakdown since the VGG19 backend is kept fixed during the
optimization, so any scaling change in the feature maps is not
accommodated by the pre-trained weights, which causes ir-
regular activations. In other words, it is required to scale the
feature maps in a layer so that the expectation of the inner
products between the weights and the features are intact. Let
us denote the weights, feature maps of the style image, and
scale in layer l by Wl, yl, and sl, respectively. Since convolu-
tion can be formulated into inner product, for simplicity, we
consider inner product here. For a feature map, we enforce
the following equality to hold

E[(WT
l yl)� sl] = E[WT

l yl]� E[sl]

= E[WT
l yl],

(2)

which implies the noise has one-mean. The operator� stands
for the Hadamard product. The first equality in 2 is the result
of the assumption that the inner product and the noise1 are
independent. Also, since scaling by a negative value makes
no intuitive sense, we keep the noise strictly positive as well.

Having identified how we can scale the feature maps, in-
spired by the formation of AdaIN, we propose to scale in a
similar way as AdaIN does. Concretely, for each feature map
of the style image in each layer of VGG19, we perform the
following re-normalization

yl := sl � (yl − µ(yl)) + µ(yl), (3)

where µ(.) is taken over the spatial positions. The reason we
subtract the mean and add it back after re-scaling is that smay
not be perfectly one-mean and we do not expect the mean of
yl to be shifted, which may lead to some undesirable change

1We use scale and noise interchangeably from then on.
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in the style representation in the feature space. Even though
the noise can be explicitly shifted to have one-mean, doing
so may risk resulting in negative values. This approach offers
multi-style outputs with no change in the number of trainable
parameters and negligible additional processing time.

3.2. Loss function

In the original work [8], the VGG encoder is used to ensure
that the style code of the generated image is the same as that
of the style image. However, in our case, the feature maps are
perturbed when extracting the latent code. For this reason, we
must take that into account when computing the loss. Let us
define f̃ the encoder in which the feature maps in each layer
are scaled. The style loss, denoted by Ls, is

Ls =
∑
l∈L

∥∥∥µ(fl(x̂))− µ(f̃l(y))∥∥∥2
2
+
∥∥∥σ(fl(x̂))− σ(f̃l(y))∥∥∥2

2
,

(4)
where L contains relu1 1, relu2 1, relu3 1, and
relu4 1 of the VGG encoder, and x̂ is the generated image.
The content loss is almost the same as in [8] but with the
noise taken into account

Lc =
∥∥∥AdaIN(f(x), f̃(y))− f(x̂)

∥∥∥ . (5)

Thus, the total loss to minimize is

L = Lc + αLs, (6)

where α is a constant to weight Ls.

3.3. Implementation details

For training, we utilized a subset of the MS COCO train-
ing set [13] and the provided training split of the Wikiart
dataset [14]. We tested the proposed model on the MS COCO
test set, Wikiart test set, several provided images in [8,9], and
some random images from the Internet. The network struc-
ture is the same as in [8] except the output of the decoder
being activated by a hyperbolic tangent and the max pooling
in VGG19 being replaced by mean pooling. By default, we
employed a uniform distribution of one-mean having support
of [0.5, 1.5]. We found that training with noise from the be-
ginning makes the optimization very difficult. Therefore, we
bootstrapped the network by training the decoder the same
as in [8] for 20 epochs, and then fine-tune the network for 4
more epochs with the noise injection, new loss, and α = 1.
The model is implemented in Theano [15].

4. EXPERIMENT

For space considerations, the major content in this section
is qualitative results as no known metric is able to fully re-

place human opinion [16–22], especially in the image syn-
thesis area. Code and more visualizations are available at
https://github.com/justanhduc/multar.

4.1. Qualitative performance

For references, we chose the original AdaIN [8] and Mul-
timodal Transfer (MT) [9]. Figs. 3 shows the visual com-
parisons between the proposed model and the two reference
methods. In each case, we synthesized three outputs corre-
sponding to three randomly drawn scales. Our results offer
diversity in features, and even look better and more realistic
than the benchmarking methods. To check the generalization
of the proposed module, Fig. 4 presents more results of Mul-
tar using some downloaded images from the Internet. As can
be seen from the figure, the outputs have varied characteris-
tics, which lets users select the one they find most artistic.

In terms of inference speed and memory, our model con-
sumes as much resource as AdaIN. The proposed module is
versatile that it does not require more trainable parameters nor
any ad-hoc training scheme, and it can achieve multimodality
with almost no change in computational time and resource.

4.2. Ablation study

We experimented with different distribution supports for the
noise. Any noise with mean different from 1 (for e.g., 2) re-
sults in complete failure. Regarding the noise support, we
additionally tested the network with noise ranges of [0, 2] and
[0.25, 1.75], and the results are shown in Fig. 5. As antici-
pated, wider noise ranges contribute to more diverse features
in the results but make it harder to optimize, which makes the
results appear noisier. Also, as we put more weight to the α
term, the outputs possess more features from the style image
but look far less realistic. In general, we found that our choice
of hyperparameters brings the most satisfaction.

5. CONCLUSION

In this paper, we have defined a new scenario of multimodal-
ity and proposed a method to transform a unimodal style
transfer method into a multimodal one. Inspired by the way
AdaIN works, we presented an efficient way to scale the
feature maps in the style encoding branch, and the model is
able to synthesize different outputs of different details given
a single style image. Experiments showed that the model can
generate an infinite number of different outputs with compet-
itive quality among state-of-the-art methods in the field.
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Fig. 3. Qualitative results against AdaIN [8] (the first two rows in the third column) and MT [9] (the last row in the third
column). The AdaIN results are taken from the official Github repository. The MT results are obtained by running a re-
implementation on a Github repository. We exhibit three different images produced by injecting different one-mean uniform
noises. Best viewed in zoom and color.

Fig. 4. Our results with random targets and styles from Internet. The first and second columns are targets and styles, respectively.
The others are generated images. Best viewed in zoom and color.

Fig. 5. Ablation study on noise level. From left to right: A target, a style image and stylized images with the noise distribution
supports of [0.5, 1.5], [0.25, 1.75], and [0, 2]. Best viewed in color and zoom.
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