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ABSTRACT

We propose an approach to reconstruct a precise and dense 3d
point cloud from a single image. Previous works employed re-
construction to complexity 3D shape or directly regression lo-
cation from image. However, while the former requires over-
head construction of 3D shape or is inefficient because of high
computing cost, the latter does not scale well as the num-
ber of trainable parameters depends on the number of output
points. In this paper, we explore a method to infer a point
cloud representation given an input image. We extract shape
information from an input image, and then we embed the two
kinds of shape information into the point cloud: point-specific
and global shape features. After that, we deform a randomly
generated point cloud to the final representation based on the
embedded point cloud feature. Our method does not require
overhead construction, and is efficient and scalable because
the number of trainable parameters is independent of the point
cloud size, which is the first work to be able to do so according
to our knowledge. Thorough experimental results suggest that
our proposed method outperforms with other state-of-the-art
methods in dense and precise point cloud generation.

Index Terms— 3D reconstruction, point cloud process-
ing, neural network, deep learning

1. INTRODUCTION

Deducing 3D shapes from static 2D images is a fundamental
yet very challenging task in computer vision because going
from 2D to 3D is equivalent to reconstructing the kernel space
of the projection from singular, which is impossible to per-
form exactly. Traditionally, the solution is approximated by
Structure-from-Motion [1] or Shape-from-Shading [2]. How-
ever, while the former requires a sequence of multiple images
of the same scene from different perspectives and an excellent
image matching algorithm, the latter requires prior knowledge
of the light sources as well as albedo maps, which makes it
suitable mainly for studio environment. Learning-based ap-
proach, which can learn the shape priors from data, has also
been considered. A notable work is Saxena et al. [3] which
constructed a Markov random field to model the relationship
between image depth and various visual cues.
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Recently, thanks to the advancement of deep learn-
ing, neural networks (NNs) have been applied to many
fields [4–11], including 3D reconstruction. These methods
can reconstruct an object from a single image by taking ad-
vantage of the symmetry of the object and the phenomenal
ability to extract statistics from images of NNs. The obtained
results are usually much more impressive than traditional
single image 3D reconstruction methods. Wu et al. [12] em-
ployed a conditional deep belief network to model volumetric
3D shapes. Yan et al. [13] introduced an encoder-decoder
network regularized by a perspective loss to predict 3D volu-
metric shapes from 2D images. In [14], the authors predicted
3D voxel representations from given images but the voxel
representation is not computationally friendly even with the
aid of GPUs. For mesh representation, Wang et al. [15] grad-
ually deformed a predefined mesh according to the derived
features from the input image by using graph convolution,
but mesh representation requires overhead construction and
may result in computing redundancy as masking is needed.
Also, it computes local of points, so a point-to-point distance
loss is not suitable. The closest works to ours are perhaps
those in [4,16]. Fan et al. [4] proposed a straight-forward
network to directly map an input image to its point cloud rep-
resentation using two losses to directly relate the ground truth
point clouds and estimations. Insafutdino et al. [16] similarly
predicted a 3D point cloud representation for a given image,
but the loss function is designed for the 2D projections. A
disadvantage of these methods is that the number of trainable
parameters are proportional to the number of points in the
output cloud, thus there is always an upper bound for the
point cloud size.

In this paper, we propose Pix2Pc, a method which taking
a single image as input and outputs a 3D point cloud repre-
sentation of the object. Inspired by [15], we first distill shape
features from an input image by a convolutional neural net-
work (CNN), and then utilize the extracted shape information
to deform a randomly initialized point cloud into the shape
of the given object. To embed the shape information from an
image into point cloud, we consider two types of feature: one
is based on projection as done in [15] and the other is inspired
by an image style transfer algorithm [5]. The shape informa-
tion is obtained from various layers, thus the prediction can
be based on coarse-to-fine features. Unlike [15], our network
simply consists of simple 2D convolution and dot product,
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Fig. 1. Overview of the proposed framework.

which are efficient and optimized in most contemporary deep
learning libraries. Also, as the number of trainable parameters
is independent of the number of points, our method obviously
can scale much better compared to prior arts. In fact, with a
simple hack, we can produce as many points in the output
cloud as we desire. Thorough experiments demonstrate that
our method can infer precise shapes from images and outper-
forms with previous works in 3D point cloud generation.

2. PIX2PC

2.1. Overview

Our framework is described in Fig. 1. we randomly generate
a point cloud, use a CNN to derive 2D feature from a given
image, and then transfer the feature maps information to fea-
ture vector for every point. Prediction of the precise and dense
point cloud is carried out by processing the extracted point
cloud features independently for each point via a multilayer
perceptron (MLP).

2.2. Shape information extraction

To obtain a point cloud for a given image, we first need to
exact features from the 2D input image. We use a VGG-19
[17], which consists of a series of convolutions and downsam-
plings. We use this architecture to distill the object’s shape
information. After that, we use the shape information to cal-
culate the feature vector for each point. We propose two ways
for extracting point features, which are described in 2.3.

2.3. Shape feature embedding

In this section, we consider two types of feature: one is pro-
cessed by projection and the other is processed by the adap-
tive instance normalization (AdaIN) [5] method. Each feature
represents two types of feature The procedures to extract the
features are described in 2.3.1 and 2.3.2.

2.3.1. Projection

Similar to [15], to embed multi-resolution information into
the feature vectors, we utilize the 2D feature maps preceding
to the pooling layers which project the point cloud onto 2D
features. LetXi be the feature map from the i-th max-pooling
layer as shown in Fig. 1, and p is a point from the initial cloud.
The feature vector ŷi is defined as

ŷproji = project(p,Xi) (1)

where project(x, y) projects x onto y. To obtain shape fea-
tures at various resolutions, we concatenated a total of five
feature vectors by projecting the point cloud onto the five fea-
ture maps from max-pooling.

2.3.2. Adaptive instance normalization

In addition to projecting every point onto the feature maps and
obtain a feature vector for each point, we can consider feature
extraction from a more global point of view. Concretely, we
can encode the shape statistics of the object and then transfer
it to the point cloud so that the point cloud can be deformed
into the expected shape. We first obtain point cloud features
by applying an MLP to the initial point cloud. The MLP con-
sists of five blocks, each of which is composed of two fully
connected layers having the same number of nodes. Inspired
by the way AdaIN works, we propose to perform the same
normalization to the point cloud features using the extracted
image features. Let yi be the output feature vector of the point
cloud from block i-th of the MLP. The AdaIN feature is de-
fined as

ŷadaini = σXi

yi − µyi

σyi

+ σXi
(2)

where µXi
and σXi

are the mean and standard deviation of
Xi taken over the spatial locations, and µyi and σyi are the
mean and standard deviation of yi. Here, we ask the network
to encode the shape statistics in the feature maps, and through
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AdaIN we can transfer the statistics to the point cloud fea-
tures, which will guide the deformation network how to de-
form the point cloud. We concatenate five projection features
and AdaIN features with coordinate of point

ŷp =
[
[ŷproji ]5i=1, [ŷ

adain
i ]5i=1, p

]
(3)

where [·]5i=1 is the concatenation of feature maps extracted
at 5 resolutions. After concatenation, we use it as input to a
deformation network.

2.4. Deformation network

After obtaining a feature vector for every point, we use a de-
form network to obtain the final point cloud. Our proposed
network takes feature vector of point cloud as an input and
deforms each points using MLP. To measure the discrepancy
between the estimated point cloud and ground truth, we use
Chamfer distance (CD), which measures the sum of the dis-
tances between each point in a cloud to the nearest point in
the other and vice versa, to regress the coordinates of points.
Since our network is designed to process each point in the
cloud independently, Chamfer distance is a natural choice as
it concerns only the distance between two points and disre-
gard their neighbors. This is unlike [15] in which Chamfer
distance is not really a suitable choice given the fact that mesh
representation should be deformed locally. The Chamfer dis-
tance compute the distance of each point to the other set. The
Chamfer distance loss Lchamfer is defined as:

Lchamfer =
∑

p
minq||p− q||22 +

∑
q
minp||p− q||22 (4)

where p is the point of estimated point cloud and q is the point
of the ground truth point cloud.

2.5. Implementation details

When we generate a random point cloud naively, its projec-
tion does not densely cover all the area of the image. In order
to solve this problem, we generate a point cloud in two steps.
First, we randomly generate 2D points to be uniform distri-
bution or normal distribution and 3D Z coordinate to cover
the entire image. Second, the points on the 3D space are cal-
culated. Also, we find that uniform distribution works better
than normal, and so we stick with that choice for all the ex-
periments. Also, we generate a random point cloud for ev-
ery iteration. When we obtain point cloud feature by MLP,
the numbers of nodes of the blocks are 64, 128, 256, 512,
and 512. Also, our deformation network consists of MLP of
4 layers. The first three layers have dimensions of 512, 256,
and 128 and the last layer produces the deformed point cloud.
For the AdaIN and full models, due to the long training time,
we actually bootstrap the network in the first 15 epochs by

using only projection and then for the last 5 epochs we con-
tinue training by adding or replacing with the AdaIN branch.
We randomly generated 5k points, and our proposed model
takes the generated point cloud and 224x224 grayscale im-
age as input. The batch size is 1. We trained for a total of 20
epochs. The learning rate was 1e-4 and dropped to 3e-5 after
15 epochs. We use the ADAM optimizer with weight decay
1e-5. The model is implemented in Tensorflow [18].

3. EXPERIMENTAL RESULT

3.1. Database Setup

We used the dataset created in [19]. The dataset is based on
ShapeNet [20]. The images in this database were rendered
using various viewpoints from the model. We chose all cate-
gorys in ShapeNet. We split training and test sets by 8:2 on
the object basis.

3.2. Comparison to state of the art

To compare with state-of-the-art and our proposed method,
we chose PSG [4], 3D-R2N2 [19] and GAL [21]. PSG and
GAL are a method for reconstructing a point cloud from a
single image. 3D-R2N2 is a method for estimating a voxel
from a multi view image. We evaluate quantity reconstruction
result with IoU. To compute IoU of two point clouds, we con-
vert our approximate point cloud to a 323 volumetric using the
voxelization method in [16]. In Table 1, we demonstrate the
IoU of our network compared to 3D-R2N2, PSG and GAL.
Even though Px2Pc is not directly trained by IoU, or does not
learn how to voxelize like the competing methods, our IoU
is higher than those of other methods. Also, in Table 1, we
present the CD of our network compared to 3D-R2N2 and
PSG. As can be seen from the Table, our CD is smaller than
those of other methods.

3.3. Qualitative result

Fig. 2 shows the results of the proposed method versus those
of PSG. As shown in the figure, our proposed model gen-
erates point clouds of more precise shapes than PSG. Our
method takes an image and a randomly generated point cloud
to reconstruction the target point cloud, so it generates an
arbitrary-sized point cloud by using generated point cloud dif-
ferently. However, PSG takes only one image to generate a
point cloud. Therefore, it generates a fixed point cloud, and it
cannot concatenate to make a scalable point cloud. To show
off the scalability of our method, Fig. 3 presents more re-
sults of scalable point cloud. As can be seen from the fig-
ure, the number of points varies from 5k, 15k and 50k, and
the point clouds are voxelized having 256 resolution. These
results show that our proposed model is arbitrarily scalable
point cloud according to user’s desire.
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Table 1. Comparison to other methods. The best, second best and third best results are indicated by bold. ”↑” indicates higher
is better. ”↓” indicates the opposition.

Category table car chair plane couch firearm lamp watercraft bench speaker cabinet monitor cellphone mean

CD ↓
3D-R2N2 1.116 0.845 1.432 0.895 1.135 0.993 4.009 1.215 1.891 1.507 0.735 1.707 1.137 1.445

PSG 0.517 0.333 0.645 0.430 0.549 0.423 1.196 0.633 0.629 0.756 0.439 0.722 0.438 0.593
Pix2Pc 0.314 0.220 0.333 0.129 0.289 0.128 0.560 0.300 0.211 0.471 0.310 0.275 0.181 0.286

IOU ↑

3D-R2N2 0.580 0.836 0.550 0.561 0.706 0.600 0.421 0.610 0.527 0.717 0.772 0.565 0.754 0.631
PSG 0.606 0.831 0.544 0.601 0.708 0.604 0.462 0.611 0.550 0.737 0.771 0.552 0.746 0.640
GAL 0.714 0.737 0.700 0.685 0.739 0.715 0.670 0.675 0.709 0.698 0.772 0.804 0.773 0.712

Pix2Pc 0.676 0.820 0.693 0.779 0.784 0.757 0.552 0.769 0.739 0.713 0.769 0.764 0.846 0.743

Fig. 2. Qualitative results of different methods.

Table 2. Ablation study results
Category chair plane lamp mean

Pix2Pc-proj 0.683 0.680 0.536 0.633
Pix2px-AdaIN 0.640 0.666 0.483 0.596

Pix2Px 0.693 0.779 0.552 0.675

Fig. 3. Scalability of the proposed method.

3.4. Ablation study

We performed an ablation study to analyze the role of each
component. Table 2 demonstrates the IoU of each model. As
shown in Table 2, the IoU of Pix2Pc without AdaIN or pro-
jection declines. The main reason is the lack of features that
the projection method and the AdaIN method provide. As can
be seen in Fig. 2, Pix2Pc-proj produces better local shapes.
e.g. the leg of the chair. Conversely, Pix2Pc-AdaIN produces
a global shape well, e.g. the body of the plane. Therefore, the
result of Pix2Pc combining the two methods shows the point
cloud generated considering the global and local shapes

4. CONCLUSION

We have proposed a network that extracts shape information
from a single image and deforms the randomly generated
point clouds according to the distilled information. To trans-
fer the shape information from the image feature maps to
the initial point cloud, we process two types of feature: one
is based on projection to squeeze a feature vector for each
point, and another is inspired by AdaIN in image style trans-
fer. After that, the obtained features are concatenated and
fed to a deformation network which is a straight-forward
MLP. Experimental results show that the model estimates a
precise shape from randomly generated point cloud with the
outperform quality for a given image.
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