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ABSTRACT We propose a generative framework that tackles video frame interpolation. Conventionally,
optical flow methods can solve the problem, but the perceptual quality depends on the accuracy of flow
estimation. Nevertheless, a merit of traditional methods is that they have a remarkable generalization ability.
Recently, deep convolutional neural networks (CNNs) have achieved good performance at the price of
computation. However, to deploy a CNN, it is necessary to train it with a large-scale dataset beforehand,
not to mention the process of fine tuning and adaptation afterwards. Also, despite the sharp motion results,
their perceptual quality does not correlate well with their pixel-to-pixel difference metric performance due
to various artifacts created by erroneous warping. In this paper, we take the advantages of both conventional
and deep-learning models, and tackle the problem from a different perspective. The framework, which we
call deep locally temporal embedding (DeepLTE), is powered by a deep CNN and can be used instantly like
conventional models. DeepLTE fits an auto-encoding CNN to several consecutive frames and embeds some
constraints on the latent representations so that new frames can be generated by interpolating new latent
codes. Unlike the current deep learning paradigm which requires training on large datasets, DeepLTE works
in a plug-and-play and unsupervised manner, and is able to generate an arbitrary number of frames from
multiple given consecutive frames. We demonstrate that, without bells and whistles, DeepLTE outperforms
existing state-of-the-art models in terms of the perceptual quality.

INDEX TERMS Frame synthesis, video processing, manifold learning, convolutional neural network,
unsupervised learning.

I. INTRODUCTION
With the advances in video-capturing devices, there has been
an increasing demand for high-quality videos. Because of
this demand eruption, several video applications have been
of particular interest, such as image morphing and slow-
motion video capturing. However, recording a high-frame-
rate video usually involves expensive devices and doing so
with hand-held devices is impractical, as the process requires
expensive and bulky cameras, large memory storage, and
intense power supplies from the devices. Moreover, along
with the development of high-refresh-rate displays, end users
desire to watch high-quality videos created by upgrading low
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frame-rate videos captured by older cameras. For these rea-
sons and others, it is natural to ask whether we can enhance
the frame rate of existing videos, i.e., interpolate video frames
in the middle of existing ones.
Video Frame Interpolation: is among the most long-

standing and challenging problems in video processing. This
problem is inherently ill-posed because given two consec-
utive frames, a number of solutions can be valid. Conven-
tionally, optical-flow-based methods are extensively studied
to deal with this problem [19], [24], [48], and are often
regarded as Lagrangian methods because they require solv-
ing optimization problems to compute optical flow. On the
other hand, another approach called Eulerian eliminates the
need for flow computation as it characterizes motion over
time at each fixed location. Notable studies in this category
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include phase-based methods [27], [45]. Despite such huge
efforts, performance is still limited due to various obstacles.
Although optical flow estimation is another classic and diffi-
cult task itself, phase-based methods are shown to be suitable
for small-motion videos only. Nonetheless, a merit of these
methods is that they are off-the-shelf models and can be
used instantly, and hence always work at their full capacities.
We will frequently refer to these bottom-up and non-learning
based methods as ‘‘conventional’’ models from now on.

Recent years have seen the huge success of convolutional
neural networks (CNNs), a variant of neural networks (NNs),
in various computer-vision areas. In brief, an NN is a para-
metric function of composites and superpositions of simple
nonlinearities, and it has been proven to be able to approx-
imate any function. A CNN is a modification of an NN in
which the dot product is replaced by the convolution operator,
which enables the system to work with multi-dimensional
arrays directly without flattening them into vectors. The per-
formance of deep-CNN-based methods is superior to that
of the conventional algorithms because of their phenome-
nal approximation ability, but unfortunately, training on a
large-scale dataset is usually required beforehand, which is
generally time-consuming and infeasible in many situations.
Furthermore, to make such networks operate at their fullest
potential, adaptation or fine tuning might be required because
in training, one may impose several regularizations on the
models, which produces biased estimators.

An important concept for many ideas in machine learning
is that of a manifold. Loosely speaking, a manifold is a
connected set of points that can be represented well by only a
few dimensions in a high-dimensional space [8]. In machine
learning, the manifold hypothesis is that data occur only
along a thin manifold, and interesting variations in the data
occur only along directions that lie along the manifold. The
rationale of this hypothesis is that the probability distribu-
tion over images is highly concentrated because a randomly
generated image is just as good as noise. In addition, many
transformations of an image, such as translation and rotation,
result in other images which can be imagined to be in the
neighborhood of the original image. Such descriptions fit
video frames quite well; that is, most information in a frame
is likely to be present in the adjacent frames, and these frames
can establish a manifold in a much lower-dimensional space
because the variations among frames should be small. Despite
such potential, few methods based on manifold learning have
been introduced, and these methods only deal with problems
which can be regarded as ‘‘toy problems’’ according to mod-
ern standards [3]. A possible reason is that most manifold
learning models require abundant data so that most variations
in the data are included, which is not met by videos in daily
life. Nevertheless, a merit of the interpolation based on man-
ifold learning is that the synthesis is more direct and intrinsic
and is not based on any extrinsic tools that are difficult to
acquire such as phase and optical flow.

As a key factor, perceptual image quality is an essen-
tial aspect in the image-synthesis field. From the perceptual

FIGURE 1. (a)–(c) Interpolated frames by the scheme in [21], averaging,
and our framework. (d)–(f) Perceptual error maps obtained by the
framework in [16] of the synthesized images with respect to reference (g).

quality perspective, existing optical-flow-based methods
motivate the development of consistent quality over the
global spatial region. Fig. 1 depicts examples of the inter-
polated images in (a)–(c) and its corresponding perceptual
error maps in (d)–(f) obtained by our previous image qual-
ity assessment (IQA) framework [16] with respect to the
reference in (g). In Fig. 1, each of the interpolated images
is obtained by an existing state-of-the-art optical-flow-based
method [21] in (a), simple averaging of two input frames
in (b), and the proposed framework in (c), respectively.
In Fig. 1(a), the interpolated frame is sharply synthesized
over the global region except for specific local region (see
the human hand region). Correspondingly, in the perceptual
error map of Fig. 1(d), the dark regions indicate erroneously
predicted regions. Because the optical flow model can easily
generate prediction errors in local regions with fast motions,
it can easily lead to inaccurate image warping, which causes
strong local artifacts in Fig. 1(a). On the other hand, if the
two input images are simply averaged, as shown in Fig. 1(b),
although heavily blurred signals are generated over the fast-
motion region, perceptually, the image is still as pleasant as
in Fig. 1(a). This point is illustrated in Figs. 1(d) and (e),
where errors around the hand region are at a similar
level in terms of the gray intensity. Furthermore, distor-
tions causing frequent discontinuities in images are more
noticeable [14], [15], thus the perceived quality might be
low. Therefore, if we can reduce the blurriness created from
averaging motion regions, the perceived quality can be much
improved over that of the optical-flow-based methods. So
far, none of the plug-and-play alternatives to the optical-
flow-based approach have become competitive in practical
video benchmarks. However, we argue that the time might be
right to revisit and further innovate traditional alternatives to
optical-flow-based methods to see whether they can provide
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a better perceptual synthesis quality, which is lacking in
current optical-flow-based approaches.

Combining all the advantages of the discussed approaches,
we attempt to solve the problem of frame interpolation intrin-
sically by introducing a novel framework, dubbed as deep
locally temporal embedding (DeepLTE). DeepLTE is built
upon the manifold hypothesis that in some latent space, con-
secutive frames lie very close to each other on a manifold.
Based on this hypothesis, we can explicitly impose some
constraints so that the true manifold can be approximated
by a simple formulation. Thus, new latent codes can be
sampled from the estimated manifold and new frames can
be produced by decoding the new latent codes. To this end,
we resort to the computing power of an auto-encoding CNN.
Because the constraints are defined to preserve the temporal
relationship of the inputs, the encoder of the CNN can be seen
as a temporal embedding, which provides the name of the
proposed method. The described framework can be seen as a
special case of averaging pixels. Concretely, because convo-
lution works in a sliding fashion, each dimension in the latent
space corresponds to a certain patch of the original image.
The latent constraint, which is a weighted-average strategy,
then averages the latent codes in the latent space, which can
be seen as averaging patches of the same spatial locations.
Fig. 1(c) demonstrates an image obtained by our method.
As can be seen, our result does not show any irritating artifacts
like those found in the optical flow method, and is much
sharper and more pleasant than simply averaging two input
images.

The proposed method is significantly different from most,
if not all, existing methods in a number of ways. First,
it is based on manifold learning, which is completely
different from existing methods based upon optical flow,
image phase, or contemporary deep learning. Moreover, even
though there are several methods utilizing manifold learning,
ours is the first to be applied to natural and daily-life videos
consisting of complex motions. Second, unlike previous
deep-learning-based studies in frame synthesis, we propose
an alternative to the contemporary training–testing paradigm
of deep learning. In the contemporary deep learning litera-
ture, CNN is generally trained over a large dataset. By con-
trast, here we use only the video sequence to be interpolated
as input without the need of a separate training phase or any
external data. Given a set of consecutive video frames,
we define several frames as anchors and interpolate the in-
between frames corresponding to the given middle frames.
We then optimize the CNN’s weights by minimizing a recon-
struction loss between the reconstructed and given anchors,
and another reconstruction loss between the interpolated and
given middle frames. After the weights are optimized, we can
freely interpolate any middle frames by arbitrarily interpo-
lating the latent codes. Hence, it works in a plug-and-play
like conventional methods, which makes it always ready to
test without training. Also, the optimization is carried out
blindly on the test set without any external supervision signal,
hence the method is unsupervised. Accordingly, our method

is essentially a bridge that connects conventional and deep-
learning-based methods.

Compared to existing methods, DeepLTE enjoys a number
of advantages. First, existing deep learning methods have a
separate phase for training. Thus, in the testing phase, they
must use the network architectures defined in the training
step. In contrast, being plug-and-play, the proposed method
has the freedom to choose and change its structure based
only on the information of an input sequence. To best suit
an input sequence, there is a degree of freedom to choose
different network architectures for the encoder and decoder,
downsampling strategies, cost functions, and so on. Second,
powered by a deep auto-encoding CNN, DeepLTE possesses
the performance level of deep learning, which has been shown
to be superior to conventional methods in image generation.
Last but not least, DeepLTE can synthesize an arbitrary num-
ber of frames in a run. To the best of our knowledge, no exist-
ing method can include all these properties at the same time.
DeepLTE is also optimized with a perceptual cost function so
the synthesized images have a much better perceptual quality
than those produced by existing methods. To summarize all
the differences between the proposed method and existing
works, we tabulate all the notable features in Table 1 as
depicted.

Our work mainly focuses on the following contributions.
1) We propose a new frame-synthesis framework that

bridges the gap between conventional and deep-
learning-based models. The method is plug-and-play,
but achieves a deep-learning-standard performance.

2) Unlike existing methods that mostly employ extrin-
sic tools, DeepLTE is entirely based on intrinsically
manipulating the underlying latent structures of videos,
and this methodology has never been applied to real-
world videos consisting of complex motions.

3) We discover that deep networks can capture a great deal
of video statistics, which may not only be beneficial to
the frame-synthesis field but may also fuel advances in
other deep unsupervised-learning areas.

The rest of the paper is organized as follows. In Section II,
we review some of recent studies. In Section III, we introduce
DeepLTE and explore a number of its variants. We present
the benchmarks of the proposed algorithm, including com-
parisons with state-of-the-art methods, ablation studies, and
analyses in Section IV. Finally, we conclude the paper
in Section V.

II. RELATED WORK
Video frame interpolation is a classic problem in video pro-
cessing. Traditionally, this is done by estimating motions in
consecutive frames [1], [48]. Mahajan et al. defined ‘‘path,’’
which is similar optical flow, and then used 3D Poisson
reconstruction for in-between frame generation [24]. As an
alternative to optical-flow-based methods, Meyer et al. uti-
lized phase information to interpolate frames, but this method
may fail to retain high-frequency details in regions containing
large motions [27].
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TABLE 1. Comparison of features according to video frame-interpolation method. ‘‘v’’ indicates that a feature is included in the method and ‘‘−’’ specifies
the opposition. ‘‘End-to-end’’ implies that the method is designed to produce interpolated frames directly, whereas the opposite case does not include
the interpolation step in its design.

Since the huge success of deep CNNs in image recog-
nition/classification [9], [20], [40], many researchers have
proposed estimating optical flow using CNNs [7], [44], [47].
These methods are not optimized to directly synthesize new
images; hence, the generated images may contain many
artifacts due to inaccurate flows and warping. The recent
state-of-the-art models estimate an optical-flow field in an
unsupervised manner [12], [21], which enhances the per-
formance significantly but artifacts are still inevitable. In a
different direction, the method in [25] is based on a tech-
nique called pixel hallucination which directly generates new
pixels from scratch. However, the results are not visually
pleasing [21]. Finally, a recent technique based on adaptive
convolution was proposed in [30], [32]. These methods learn
to produce a set of pixel-dependent filters and convolve these
filters with the input frames to interpolate each pixel. The
results are notable, but the method requires the network to
learn a set of filters for each pixel, which is computationally
unfriendly. Above all, all these methods require a separate
training step on big data and may need fine tuning or adapta-
tion to take full advantage of the networks.

The interpolation method closest to DeepLTE was pro-
posed by Bregler and Omohundro also relies on manifold
learning [3]. However, they estimated a nonlinear manifold
for the entire series of frames and the video sequence used
simply contained talking lips, which is quite trivial according
to the current standard. In a remote study [46], an observa-
tion that latent variables can encode motions supports the
proposed idea, but their latent codes are randomly sampled
from a Gaussian distribution, and their work concentrates on
predicting the trajectory of motions given a still image; hence
the generated images are nowhere near realistic.

The technical inspiration for our work is locally linear
embedding (LLE) [37]. This method seeks a linear relation-
ship between neighboring samples in their original space and
then finds another space, preferably having lower dimension,
where this relationship is preserved. We briefly describe
the work in Appendix -A. Applying LLE directly to frame

interpolation, however, is infeasible for two reasons. First,
like other manifold learning methods, LLE requires abun-
dant data so that the manifold is well-sampled. Unlike facial
expression images in [37] or talking lips in [3], real-world
videos do not contain any common objects or structures.
Given a target frame, only a few neighboring frames are
useful for estimating the manifold. Second, the weights of the
linear combinations in LLE are obtained from optimization,
which does not provide any intuition so that we can sample
new latent codes in the neighborhood of a point. Nevertheless,
LLE provides us with several key ideas that motivate the
proposed framework. First, we do not need to work with the
whole video but only several successive frames, and assume
that their underlying manifold in some latent space can be
easily approximated. Second, if we can encode video frames
into this latent space and thenmap their codes back into image
space, then new frames can simply be synthesized in the latent
space. In the next section, we depict how DeepLTE is built
based on this idea.

III. DEEP LOCALLY TEMPORAL EMBEDDING
A. PRELIMINARIES, NOTATIONS, AND OVERALL
DESCRIPTION
We use calligraphy letters (e.g., X ) to denote sets, bold
uppercase letters (e.g., X) for matrices and tensors, italic
uppercase letters (e.g., X ) for subtensors, and italic lowercase
letters (e.g., x) for column vectors and scalars.
Fig. 2 illustrates the difference between the proposed

scheme and existing models. Current trends usually require a
separate training stage with a huge amount of data for CNNs.
After the networks are trained properly, they can be deployed
in testing phase where they predict outputs for unseen data.
In contrast, DeepLTE performs both optimization and infer-
ence on the fly using testing sequence itself without any
training set. Suppose we have a sampleX in some domainX ,
we jointly optimize an encoder, which maps X into Z in
a lower-dimensional subspace of X , and a decoder, which
reconstructs the corresponding interpolated samples from Z.
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FIGURE 2. Difference between a typical CNN paradigm and DeepLTE.
Most studies involving deep networks have a separate training step that
requires the networks to learn on a dataset of big data. After the
networks are properly trained, they can be deployed in a testing phase in
which they perform inference on unseen data. On the other hand,
the proposed paradigm does not have a separate training with a big
external dataset. Instead, it performs ‘‘blind’’ optimization on testing
data, which is called ‘‘plug-and-play’’ in this paper. Even though the
plug-and-play paradigm seems to be the same as the testing phase,
the essence of it is completely different.

Because the optimization is not based on any development
set as done in a typical NN training scheme, the optimization
can be run until convergence or terminated at a fixed point.
We hypothesize (and show evidence) that the decoder of the
optimized network can reconstruct a neighboring point of Z
into a neighboring point of X; i.e., the decoder learns how to
decode the neighbors ofZ into the neighbors ofX. Therefore,
to repurpose the network for generating new data, once the
network is optimized, we can sample latent variables from the
manifold learned by the network’s encoder. In the following
sections, we outline how to apply the described scheme to
video frame interpolation.

B. DEEP LOCALLY TEMPORAL EMBEDDING FRAMEWORK
Let I ∈ Xm+1 contain m + 1 (m > 1) consecutive
frames I0, I1, . . . , Im ∈ X which are temporally uniform as
shown in Fig. 3. We refer to the frames above the time axis
as references. Furthermore, let N be a set of indices of n
specially selected frames from the m + 1 frames, which we
call nodes. In Fig. 3, it is specified that frames I0 and Im
are selected as nodes to play the role of anchors for frame
interpolation. Other reference frames can also be chosen
depending on the choice of constraint for the latent space,
which is detailed in the next section, but the nodes always
include at least the first and last frames of the sequence as
indicated in Fig. 3; i.e., indices 0 and m are always in N
(0,m ∈ N ). Unlike previous studies, we do not assume
that motions are symmetric over the middle frame or that
all frames are stabilized with respect to the starting frame.
With the references and nodes as described above, DeepLTE
performs an optimization process to construct a manifold

FIGURE 3. Notations of video frames. All frames above the temporal axis
are references. All frames below the axis are interpolated. Green denotes
frames that are nodes. Purple frames can be used as nodes depending on
the type of constraint used in the latent space.

from the given nodes. After that, the constructed manifold
can be used to interpolate new frames between two nodes.

We first describe the optimization process. The overall
framework of DeepLTE is shown in Fig. 4. Let Inodes ∈ X n

accommodate n nodes Ij, j ∈ N from the sequence. As can
be seen from Fig. 4, at first glance, DeepLTE simply fits a
CNN to a set of input images. The encoder g : X n

→ Zn

of DeepLTE first maps Inodes into Znodes, which contains n
latent variables zj ∈ Z, j ∈ N .

Znodes = g(Inodes;2g), (1)

where 2g are trainable parameters of the encoder. Next,
we perform interpolation on the latent codes using an LTE
module in the latent space. The LTE module embeds a con-
straint on the latent manifold so that new codes can be easily
interpolated and drawn from the manifold. Let us denote this
interpolation as lte : Zn

→ Zm+1. The interpolation can be
expressed as

Ẑ = lte(Znodes), (2)

where Ẑ containsm+1 interpolated codes ẑk of the reference
frames in its rows. Note that the LTE module is generally
defined to be an identity function of the nodes, and hence,
ẑj = zj for j ∈ N if not otherwise specified. Finally,
the interpolated codes are decoded back into the image space
by the decoder h : Zm+1

→ Xm+1 and we obtain the
reconstructed reference images as

Î = h(Ẑ;2h), (3)

where Î ∈ Xm+1 represents the reconstructed versions
of the reference frames, and 2h parametrizes the decoder
h of DeepLTE. As in a common auto-encoder frame-
work, we define an expected loss L(I, Î) between the ref-
erence images and their reconstructions and optimize it for
optimal 2g and 2h.

Once the fitting is done, to generate new images between
frames Ij and Ij+1, we can simply define an interpolation rule
to synthesize new codes and use the decoder to transform
the interpolated codes into interpolated frames. In the next
section, we shed light on how to design an LTE module so
that sampling in latent space is simple and intuitive.
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FIGURE 4. The overall framework of DeepLTE. First, the encoder g maps image nodes into a latent space, where they are fed to an LTE module to
interpolate the latent representations of non-node images. Then, all the latent codes are decoded by the decoder h to reconstruct the reference images.

C. LATENT CONSTRAINTS
Inspired by the work of Roweis and Saul [37], we develop
a simple constraint that establishes a relationship in a local-
ity of points in the latent space. In LLE, the weights are
determined through an optimization process. Such com-
plicated weights are not suitable in our method because
LLE is designed to reduce data dimension, not to interpolate
new latent variables or produce new data. Hence, we do not
have any intuition about how to sample new latent codes using
the learned weights. Instead, because nearby frames are close
to each other in the image space, it is reasonable to assume
that there exists a latent space such that the latent representa-
tions of these frames are also close to each other. Using this
assumption, we can approximate the locality of these points
by a polynomial manifold in the latent space. Specifically,
out of many possible choices, we choose Lagrange’s polyno-
mial approximation for its simplicity. Then, the interpolation
proceeds as follows. Suppose the sth-order polynomial is
chosen (s < m). Denote N = {j|zj ∈ Znodes} as the set
containing 0, m, and the indices of s − 1 latent nodes zj for
some j ∈ (0,m) (n = s + 1). Lagrange’s formula for the
interpolation polynomial can be defined as

ẑt =
∑
i∈N

zili(t), (4)

where ẑt is an interpolated point depending on the position
t ∈ R, 0 < t < m by using the sth-order Lagrange
polynomial, and li(t) is defined as

li(t) =
∏

j∈N ,j6=i

t − j
i− j

. (5)

Fig. 5(a) shows a plot of interpolated points between 0
and 2 using the first-order and second-order Lagrange
approximations of a sine function in half a period. We can
see that the nonlinear curve represents the sine function much
better but requires more anchors. Because in latent space,
it is unlikely that the manifold is linear, it is expected that
usingmore frames in the interpolation results in better synthe-
sis quality. We highlight that other polynomial interpolation
methods can also be applied, but all polynomial methods

FIGURE 5. (a) Plot of the first-order and second-order Lagrange
polynomials. (b) Plot of Huber loss, L2 loss, and L1 loss.
The threshold of Huber loss is 1.

have the same interpolation error, so it is unlikely that other
interpolation methods could result in any performance gain.

For a concrete example, let us consider the first-order linear
interpolation. In that case, we choose a set of |N | = 2 nodes,
i.e., only the first and last frames are in the set of nodes. The
interpolated point can be written as

ẑt = −
t − m
m

z0 +
t
m
zm

= z0 +
t
m
(zm − z0). (6)

An illustration of this strategy is shown in Fig. 6. Obviously,
this is an oversimplification of the underlying manifold.
The real manifold in any non-trivial case should be highly
nonlinear and there is no guarantee that the latent codes of
the references are co-planar, much less on the same line.
However, this is a reasonable choice because it is difficult
to walk on the manifold if the manifold is complicated, and
this oversimplification is very intuitive for choosing a frame
position to interpolate.

The importance of the LTE module is somewhat analo-
gous to that of the Naive Bayes assumption. When too few
statistics of a high-dimensional space are obtained, Naive
Bayes imposes a conditional independence assumption on the
features so that the joint distribution over the features can
be easily factored. This assumption is very ‘‘naive’’, but it
often works very well when data is limited [29]. In this study,
we encounter the same situation in which the dimension of
the latent space is high but the number of points is extremely
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FIGURE 6. Linear interpolation in latent space. In most cases, the real
latent representations z0, ..., zm can lie arbitrarily on a nonlinear
manifold illustrated by the black line. However, we approximate these
points by linearly interpolating between z0 and zm so that all the latent
codes ẑj , j ∈ [1, m− 1] are evenly distributed on the line segment
between the codes of the two nodes (the red line).

small, which makes it impossible to construct a sophisticated
manifold. However, these points are very close to each other,
so we can assume that all the points are close enough that we
can construct a polynomial estimation to the true manifold,
and it is much easier to sample from the manifold made
up by these points. This assumption is ‘‘naive’’ but works
reasonably well, and more crucially, it makes sampling from
the manifold possible.

1) ANOTHER PERSPECTIVE
We would like to have a closer look at the proposed frame-
work from the adaptive average point of view. As briefly
mentioned before, because of the way convolution works,
each dimension in the latent space is a nonlinear combina-
tion of a certain patch of the original image. By performing
interpolation between the latent codes, we actually introduce
some sort of resampling mechanism between patches of the
same spatial positions in the node images. This resampling
mechanism is better than the naive averaging method because
it is adaptive, and when the motions are too fast and compli-
cated, it synthesizes a blurry image at worst. In fact, under
some assumptions, we can show that there exists at least
one solution that can relate our method to the adaptive con-
volution approach in [30], [32]. We present a proof of this
in Appendix -B.

D. AUTO-ENCODER STRUCTURE
The details of the network are described in Fig. 4. DeepLTE
employs an auto-encoding CNN to go back and forth between
the image and latent spaces. To the best of our knowledge,
there exists no commonly accepted way to reconstruct an
image with fine detail from a low-dimensional representa-
tion, as the best techniques to compress a high-resolution
image without loss require a significant number of bits to
represent the image [38]. In order to produce sufficiently
high-fidelity images, the CNN must have a high capacity,
which can be trivially increased within the limits of the
hardware. In our experiments, we have consistently observed

that expanding the network capacity enhances image quality.
Therefore, we utilize an architecture that can exhaustively use
all available GPU memory.

Concretely, we use the 34-layer deep residual network
(ResNet-34) [9] as the encoder of DeepLTE after removing
the first mean pooling layer, global average pooling layer, and
softmax layer. Another modification is that we replace the
rectified linear unit (ReLU) [28] activation with leaky ReLU
(LReLU) [23] with a leaky parameter of 0.1. The reason is
that we do not want the network to be robust against small
changes in inputs, which is caused by functions having satu-
rating regions [5]. Another reason is that it is more linear than
all of its siblings (see Appendix -B). We perform extensive
experiments to corroborate this choice.

For the decoder part, we found that simply stacking up
convolutional layers interleaved with bilinear upsampling
works consistently well in all our simulations. The numbers
of convolutional layers in each stacking block are 3, 5, 7,
and 9. All the kernels in the decoder have a receptive field
size of 5 × 5. LReLU is used in all layers except for the
output layer, which is activated by the hyperbolic tangent
function (tanh). The reconstructed images are simply scaled
by Î = 255(Y

/
2 + 0.5), where Y is the tanh-activated

output from the decoder. The input to the network is also pre-
processed in the similar manner. Interestingly, we discovered
that dropout [41] reduces glaring artifacts of the generated
images very efficiently. Therefore, we add two dropout layers
with a dropout probability of 0.5 after the third and fourth
stacking modules. The interesting effect of dropout is inves-
tigated more in the Results section. We note that a more
sophisticated choice of the network structure may improve
performance, but it is not the main objective of our work.

E. LOSS FUNCTION
In this paper, to optimize DeepLTE, we use the reconstruction
loss, gradient loss and perceptual loss between the output
images and ground truths.

1) RECONSTRUCTION LOSS
For the reconstruction loss, we use Huber loss. As can be
seen from Fig. 5(b), Huber loss is linear in the error for
large errors but quadratic for small errors. Therefore, unlike
L1 loss, Huber is less sensitive to small errors, and unlike L2,
it does not magnify large errors but penalizes them according
to their magnitudes. Thus, Huber loss is robust to outliers by
estimating the median as L1 loss and also to small Gaussian
perturbations by returning the mean as L2 loss. For the sake
of completeness, we present the formula of the loss as follows

H(x, y) =


1
2
τ 2 + τ (|x − y| − τ ) if |x − y| ≥ τ

1
2
(x − y)2 otherwise,

(7)

where x and y are two scalar inputs and τ is a pre-
defined threshold, which we set to 1 in our implementation.
The cost between a reference and its reconstructed version
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can be calculated as

R(I, Î) =
1
p

∑
(xi,yi)∈(I,Î)

H(xi, yi), (8)

where p is the number of pixels in each image.

2) PERCEPTUAL LOSS
Following [13], we use the feature reconstruction loss tomea-
sure the high-level semantic differences between an image
and its reconstruction. Instead of measuring the Euclidean
distance between the original inputs, the loss first maps both
inputs to another space and then reports the distance between
the transformed inputs. We use VGG16 [40] pretrained on
the ImageNet recognition dataset after removing all the fully
connected layers as the mapping. It is well-known that deep
NNs extract low-level features such as edges and blobs in
early layers and perceptual and semantic features in deeper
layers, which justifies the name ‘‘perceptual’’. Furthermore,
VGG16 is trained on natural images, so it ‘‘overfits’’ to the
manifold of natural images. A badly synthesized image input
to VGG16 may not be recognized by the network and will
easily fall off the manifold, which eventually results in a high
cost. The perceptual loss is defined as

P(I, Î) =
1
l

∥∥∥φ(I)− φ(Î)∥∥∥2
2
, (9)

where φ is the VGG16 mapping and l is the number of
elements in each transformed input. Note that we keep the
weights of the pretrained VGG16 fixed during optimization.

3) GRADIENT LOSS
To further enhance the sharpness of the generated images,
we utilize difference of Gaussians (DoG) loss. Concretely,
the loss is calculated as

G(I, Î) =
1
p

∥∥∥DoG(I)− DoG(Î)∥∥∥2
2
, (10)

where DoG(U) = g1(σ1) ∗ U − g2(σ2) ∗ U denotes the
difference of two low-passed images obtained by convolving
the input image U with two Gaussian filters g1 and g2 at two
scales σ1 and σ2 (σ1 > σ2), respectively, and p is the number
of pixels in each image. The rationale for our choice over
other common image gradient operators is shown in Fig. 7.
As can be seen from the figure, the DoG image has many
more edge details and less noise than the gradient image,
so the DoG loss can better increase the sharpness of the
generated images. In our implementation, we set σ1 = 1.6
and σ2 = 1, which efficiently simulates the well-known edge
detector Laplacian of Gaussian.

Our final objective function is

L(I, Î) = R(I, Î)+ λ1 G(I, Î)+ λ2 P(I, Î). (11)

We empirically set λ1 = 10−3 and λ2 = 10−4 in all
experiments. The network is optimized end-to-end so that the
decoder can guide the encoder to find a latent space where
both the reconstructions from the nodes’ latent codes and

FIGURE 7. An example of (a) DoG and (b) the first derivative of an image.
The DoG image contains much more edge information than the first
derivative image. Best viewed in digital zoom.

the interpolated codes are possible. We initialize the weights
of the auto-encoder using He initialization [9]. We use
the ADAM optimization scheme [17] with a learning rate
of 10−4, and the other parameters are set to the authors’
suggestions. Because the fitting is blindly operated, we can
either run until convergence or terminate the optimization at
some fixed iteration. In our experiments, we chose the latter
and set the number of iterations to 5000. As a side note, better
performance might be achieved by running the optimization
longer. We implemented our model using Theano.1 [2]

IV. EXPERIMENTAL RESULTS
We considered three variants of DeepLTE: DeepLTE-1,
DeepLTE-2, and DeepLTE-3, which correspond to the first-,
second-, and third-order latent interpolation in DeepLTE,
respectively.

We assessed our framework using UCF-101 [41],
DAVIS [35] and real-life videos. For UCF-101, we tested
our method on the test set provided in [25]. The testing is
carried out as follows. For DeepLTE-3, we used frames 1,
2, 3, 5, 6, and 7 for optimization. In optimization, frames
1, 3, 5 and 7 are used as input to the CNN. The CNN
reconstructs these frames and interpolates frames 2 and 6 as
output. We optimized the weights of the CNN based on these
reconstructions (frames 1, 3, 5, and 7 are used as ground
truths) and interpolations (frames 2 and 6 are ground truths).
There is no additional data necessary for optimization. After
optimizing the weights, the CNN will interpolate frame 4
and we measured the performance between the original and
interpolated frame 4. For DeepLTE-2, we used frames 1,
2, 3, and 5 for optimization in which 1, 3 and 5 are input
and 2 is interpolated as above. Similarly, for DeepLTE-1,
we used frames 1, 3, and 5 for optimization. Frames 1 and 5
are used to predict frame 3 in optimization as above. As we
consider the visual quality with repsect to the HVS, we used
two metrics, namely visual information fidelity (VIF) [39]

1Available at https://github.com/justanhduc/DeepLTE.
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FIGURE 8. Qualitative results on UCF101. From left to right: frame1, phase-based [27], DVF [21], DeepLTE-1, DeepLTE-2, DeepLTE-3, ground truth middle
image, and frame 2. Best viewed in color and zoom.

and structural similarity index (SSIM), which are widely
used in image quality-assessment literature, to evaluate the
synthesized images. Following [21], [25], we filter only the
motion regions and evaluated on the filtered image. All input
images were processed at their original resolution (240×320)
and normalized into the range of [−1, 1].
For DAVIS, we selected several videos and only mea-

sured the performance visually, as there is no previous work
performing any benchmark on this database. To demon-
strate the ability to generate any number of frames between
two nodes, we interpolated three new frames between each
pair of reference frames. We applied the same strategy
to several real-life video segments including discoveries,
music videos, and movies. Since real-life videos usually
contain frames of different scenes, we optionally used shot
detection [33], [34] to determine which frames are eligible to

be used as the anchors. Because of the limited GPU memory,
all sequences are processed at 224× 384.
To benchmark our model, we chose several state-of-the-art

methods in the field: FlowNet2-based [11], a state-of-the-
art optical flow method; DVF [21], an implicit optical-flow-
based method; Beyond MSE [25], a state-of-the-art pixel
hallucination method; SepConv [30], a state-of-the-art model
based on adaptive convolution; Super SloMo [12], a model
similar to DVF; and phase-based frame interpolation [27],
a well-known plug-and-play and non-learning alternative to
optical-flow-based methods.

A. QUALITATIVE RESULTS
Fig. 8 demonstrates the interpolated frames of DVF [21],
the phase-based method [27], and three variants of our pro-
posed models that use the first, second and third-order latent
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interpolation, along with the corresponding ground truths. All
these sequences contain very fast and large motions between
the two input frames.

In the first row, while both the phase-based method
and DVF present many noticeable artifacts in the interpo-
lated images, all variants of DeepLTE perform properly.
As can be seen from the figure, the image synthesized by
DeepLTE-3 is the most impressive because it is interpolated
smoothly in the far background areas, which have even larger
and faster motions than the foreground objects. In the sec-
ond row, even though the motions are simple, the first three
methods fail to deliver visually pleasant outcomes. Only
DeepLTE-2 and especially DeepLTE-3 are able to produce
satisfactory interpolated frames that are sharp and pleasing.
We further note that when there exists motion blur, as in the
first frame, the phase-based method and DVF usually fail
to produce high-quality interpolated frames, which suggests
the vulnerability of the existing methods to motion blur.
In the third row, the phase-based method, DVF and
DeepLTE-1 struggle to generate satisfying results. Although
DeepLTE-2 creates blur in the areas of large motions,
DeepLTE-3 is still consistent in its performance when synthe-
sizing a very sharp in-between frame. In the last row, when
motions are too large, all methods fail in different ways. The
phase-based method and DeepLTE-1 produce double vision.
DVF confusingly warps the image and the result is terribly
distorted. DeepLTE-3, however, still manages to generate an
image with heavy blur in the motion regions, yet all the
objects and textures are still intact and recognizable. The
rest of Fig. 8 strongly reinforces our analyses above. One
may reason that the improvement in the performance of
DeepLTE-2 and DeepLTE-3 should simply be credited to the
use of more frames. However, in any non-trivial video, frames
are abundant and also, to our knowledge, no existing method
is able to harness this abundance. Our framework provides
an elegant solution to effectively utilize this rich information
from a video.

In general, it is observed that the images generated by
our method are of equal quality or even visually more
pleasant compared with state-of-the-art learning-based meth-
ods. In addition, taking a closer look, we notice that our
method actually reduces artifacts and distortion from the
original images. The same phenomenon has been observed
and discussed in [6], a study concurrent to ours. We con-
clude that our method is preferable to existing methods in
many situations because it does not require pre-training on
big data and works similarly to conventional methods, but
at the same time possesses the computing power of deep
learning, which is the key to the immense improvements of
the synthesized quality over conventional models and places
this method on par with state-of-the-art deep-learning-based
methods.

Fig. 9 shows some of our interpolated frames from several
DAVIS and real-life videos using DeepLTE-1. We processed
several segments of the videos and ran them at 12 frames
per second for a slow-motion effect. We highly encourage

FIGURE 9. Examples of our interpolated frames in DAVIS and real-life
videos using DeepLTE-1. Best viewed in color and zoom.

TABLE 2. Quantitative performance on UCF-101. Plug-and-play methods
are italic. Higher scores are better. Red, blue, and green indicate the first-,
second-, and third-best methods, respectively.

readers to view our webpage1 for more results, as it is impos-
sible to evaluate temporal coherence on still paper.

B. QUANTITATIVE RESULTS
Table 2 shows the benchmark on UCF-101 between the
proposed methods versus the chosen models. As expected,
our method outperforms all other benchmarking methods
in terms of perceptual quality. Concretely, the synthesized
images from DeepLTE-3 have higher SSIM and VIF scores
than current state-of-the-art performance. SSIM and VIF are
well-known for their correlations with the human-perceived
quality. High performance on these metrics is a strong indi-
cator that our generated images are likely to be favored by
viewers. We further emphasize the noteworthy performance
gap between DeepLTE and the phase-based method, which
is also a plug-and-play method. We deduce that performance
can be substantially improved by blending a deep computing
architecture into the traditional plug-and-play fashion.

C. ABLATION STUDY
We verify some of our choices for the proposed frame-
work. To perform the ablation study, we randomly selected
20 videos from the UCF-101 dataset. We used DeepLTE-1 in
all the ablation studies, if not otherwise specified. All settings
except for the ablated components were set to our defaults.
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TABLE 3. Quantitative ablation study on different components of our framework. Red, blue, and green indicate the first-, second-, and third-best
methods, respectively.

FIGURE 10. Qualitative ablation study on different components of DeepLTE-1. Best viewed in color and zoom.

1) LOCALLY TEMPORAL EMBEDDING MODULE
To study the effect of the LTE module, we trained an auto-
encoding CNN by a common training scheme. Concretely,
we removed the LTE module and used all the reference
frames as input. The network architecture is the same as in
Section III-D. Table 3 and Fig. 10 show the quantitative and
qualitative performance when the LTE module is removed in
training. In general, the quality of the generated images is
blurrier than our full framework. In all sequences, the synthe-
sized images contain limited motion or even none at all. They
look almost the same as either of the two nodes. The numeri-
cal results consensually suggest that without LTE, the quality
is much worse. We can see that this case is equivalent to
using only two reference frames for the linear constraint
(m = 1). Therefore, our method can work with only two input
frames by discarding the LTEmodule. However, this is highly
discouraged. Without the module, the network is not taught
how to decode the points on the line segment passing through
the two nodes. By explicitly embedding the interpolation rule
on the latent manifold, we guided the network to encode the
nodes so that the synthesized latent codes can be decoded
properly.

Nevertheless, an important observation from this bench-
mark is that deep networks capture a great deal of the
underlying manifolds of video sequences becaues they can

decode an interpolated latent variable even though they are
not optimized to do so. In [6], the authors discovered that deep
networks can capture the structure of an image, and using it
as a prior, they can blindly restore or super-resolve the image.
Here, we have found that in addition to image structures, they
can also capture video structures. This analysis can be greatly
beneficial to the advancement of deep unsupervised learning.
We demonstrate this potential in Section IV-D.

2) SCALABILITY
To perform this experiment, we randomly chose 10 sequences
from DAVIS becaue UCF-101 does not have high-resolution
video. Due to the limitation of our hardware memory (only 1
Titan X 12GB GPU), we could not scale our method to
HD resolution as in other methods, which are trained on low-
resolution images and tested on HD images. Nonetheless,
we performed a benchmark on different resolutions within the
permissible range and showed the results in Table 4. From
the results, we can see that our model can work with high-
resolution images by mapping images to a latent space of
appropriate dimension. The reason is that when the input
frames are large, the network filters are relatively small
and cannot capture information in a large neighbor. By per-
forming a series of filtering and downsampling, the network
can gradually capture more and more global information.
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TABLE 4. Quantitative results of DeepLTE-1 on different resolutions.

TABLE 5. Quantitative performance in multi-frame synthesis scenario.

We found that when the dimension of the latent space is too
small, the generated image motions are better but the gener-
ated image is blurrier. Hence, there is a trade-off between the
generated image quality and motion quality in DeepLTE.

3) MULTI-FRAME SYNTHESIS
In this experiment, we used 7 frames in each test sample.
Frames 1 and 7 were used as nodes. Frame 4 was used
as the ground truth for optimization. Using those 3 frames,
we generated 2 frames in each interval and evaluated them
using the corresponding ground truths. The benchmark is
tabulated in Table 5. It is noted that the nodes in this case
are 5 frames apart, which causes any frame-synthesis method
to struggle.

4) EFFECT OF DROPOUT
Fig. 10 shows the visual results of our method with and
without dropout. As can be seen from the figure, the images
generated without dropout have noticeable artifacts in the
interpolated regions, whereas those with dropout do not show
any sort of artifacts. As expected, as can be seen from Table 3,
the perceptual numerical results of using dropout are also
somewhat higher. The effect of dropout on the generated
images can be useful in situations where we want to both
restore and upsample low-frame-rate videos.

5) CHOICE OF ACTIVATION
As can be seen from Table 3, our method using LReLU
surpasses all other configurations of activation functions.
An explanation is that ReLU, SELU, and ELU saturate
when the argument is below some threshold. This satu-
ration makes the network robust against small perturba-
tions in input [5], which is quite unwanted in our method
because the two nodes’ latent variables and the interpo-
lated codes are very close to each other. This experiment
implies that although deep NNs are a powerful comput-
ing tool, one may need to design their architectures based
on thorough analyses of the problems to which they are
applied.

FIGURE 11. Quantitative results on the Middlebury dataset.

D. AN INTERESTING CAPABILITY OF DEEP CNN
Traditional manifold learningmethods require a large random
sample so that all the variations on the underlying manifold
can be covered. In this study, we have hypothesized and
shown evidence that even with a few neighboring data points,
we can still construct an interesting manifold because deep
CNN can capture interesting statistics of videos. We demon-
strated how the captured statistics can be applied to the frame-
synthesis problem. In this section, we show how the statistics
obtained in this manner can be applied to another area and
thereby highlight the potential of our discovery to the unsu-
pervised learning area.

Because the latent representations of a set of adjacent
frames can be used to interpolate in-between images, we con-
jecture that these representationsmust enclose videomotions.
To retrieve these motions, we adopt the flow-estimation sub-
network in [31]. The only modification is that instead of
training the network with a set of big data, we optimize it in
the proposed plug-and-play fashion.We evaluate our method,
deep plug-and-play flow (DeepPPFlow), on the Middlebury
dataset [1] and obtain the results from theMiddlebury server.2

We show the results of DeepPPFlow in Fig. 11. The com-
peting model is FlowNet2 [11], a state-of-the-art deep super-
vised method in optical flow. We note that the demonstration
is solely to verify the usefulness of the captured statistics by
the CNN because the model is basic and highly unpolished.
We conclude that CNNs working in a plug-and-play fashion
are profoundly promising to boost the deep unsupervised-
learning area.

V. CONCLUSION
In this paper, we have presented a new method for
in-between frame generation. Our method constructs a
polynomial approximation of the true manifold of the latent
representations of consecutive frames obtained from an auto-
encoding CNN. Our model is an off-the-shelf method that can
be applied instantly to a video, like conventional methods,
while possessing deep-learning-level performance. Being
plug-and-play, our method has a high expressive power in

2http://vision.middlebury.edu/flow/eval/results-anh-duc-nguyen/

VOLUME 7, 2019 179315



A.-D. Nguyen et al.: Video Frame Synthesis via Plug-and-Play DeepLTE

that a wide selection of latent constraints and network struc-
tures can be incorporated into our algorithm. DeepLTE can
synthesize an arbitrary number of images among any number
of frames simultaneously. Different benchmarks reveal that
our synthesized images are comparable with state-of-the-art
performance in the field. Moreover, our work exposes that
deep CNNs capture a great deal of video statistics, which
may be greatly beneficial to the study of deep unsupervised
learning.

A. LOCALLY LINEAR EMBEDDING
To make the paper self-contained, we briefly summarize the
idea of locally linear embedding (LLE) [37]. Suppose we
have a dataset X ∈ Rm×n having m samples of n dimensions.
We want to find a compact representation of X , i.e., a lower-
dimensional space that preserves local relationships of each
point. We assume that there are sufficient data so that all
the twists and variations in the manifold are included. Based
on this condition, we hypothesize that each point is a linear
combination of those in its neighborhood. To find such a
linear relationshipW , for each Xi, we find a setNi containing
all the indices of the neighbors of Xi according to some
distance threshold and then solve the following optimization
to find the weightsWij:

min
W

∑
i

∥∥∥Xi −∑j∈Ni
WijXj

∥∥∥2, s.t
∑
j

Wij = 1, (12)

where Wij = 0 if Xj /∈ Ni, i.e., Xj is not in the neighborhood
of Xi. The goal of LLE is to find a new low-dimensional space
in which the linear relationship W is preserved. Suppose we
have a function that maps each Xi in the original space to each
Y ∈ Rm×k in some latent space where k � n, then we can
find Y by solving the following problem:

min
Y

∑
i

∥∥∥Yi −∑j∈Ni
WijYj

∥∥∥2,
which is similar to (12) but the minimization is over Y instead
of W .

B. RELATIONSHIP TO ADAPTIVE CONVOLUTION
METHODS
We attempt to look at the proposed method as an adaptive
average approach. We show that under some mild conditions,
our linear approach has a close relationship to the adaptive
convolution method in [30], which means that with a special
design of g, synthesizing new latent codes has the same effect
as adaptive convolution.

Suppose we have two consecutive frames I1 and I2.
From [30], we have

Î (x, y) = F1(x, y) ∗ P1(x, y)+ F2(x, y) ∗ P2(x, y), (13)

where x and y are the spatial indices of the images, P1(x, y)
and P2(x, y) are patches centered at pixel (x, y) in I1 and I2,
respectively, F1(x, y) and F2(x, y) are two pixel-dependent

kernels carrying motion and resampling information corre-
sponding to I1 and I2, respectively, Î (x, y) is the result of
the synthesis process, and ‘‘∗’’ denotes the 2D convolution
operator. Intuitively, each pixel in Î can be calculated by
convolving its own pair of kernels with the patches centered at
the same spatial position in I1 and I2. The two kernels F1(x, y)
and F2(x, y) are originally obtained through training a CNN
with a big dataset consisting of image triplets. Learning with
big data requires heavy computational overhead, not to men-
tion that the method learns a set of filters for each pixel in
the synthesized image. To establish a relationship between
this method and our approach, we will prove the following
theorem.
Theorem 1: Let g(·) be a function that maps Î , I1, and I2

to ẑ, z1, and z2, respectively. If g is chosen to be a homo-
morphism of the image space onto some latent space that
transforms addition and convolution into themselves, and the
images of the adaptive filters corresponding to each input
image belong to some same coset of the kernel of g, then in
the latent space, (13) can be expressed as

ẑ = αz1 + (1− α)z2,

where α is a real scalar.
Proof: First, applying g to (13) we obtain

ẑ(i, j) = g (F1(x, y) ∗ P1(x, y)+ F2(x, y) ∗ P2(x, y))

= g (F1(x, y) ∗ P1(x, y))+ g (F2(x, y) ∗ P2(x, y))

= g (F1(x, y)) ∗ g (P1(x, y))

+ g (F2(x, y)) ∗ g (P2(x, y)) , (14)

where the point (i, j) is the image of the point (x, y) in the
latent space. The second and third equalities use the fact
that g is a homomorphism of the image space onto some
latent space that transforms addition and convolution into
themselves. Next, suppose that g is a surjection from the
image space to the latent space. Because the set of adaptive
filters corresponding to an input frame belongs to some same
coset of the kernel of g, we can find a function g that maps
these filters to a scalar in the latent space. Concretely, let
the support of the image of the filters be [− k

2 ;
k
2 ]

2 for some
odd k . Then, we choose the images of the filter pairs in the
latent space to be

g (F1(x, y)) = α ∀x, y, (15)

and

g (F2(x, y)) = 1− α ∀x, y. (16)

where α is a real scalar. Such a function g exists
because the image space and latent space are homomorphic.
Substituting (15) and (16 into (14), we have

ẑ = αz1 + (1− α)z2,

that is, the new code ẑ is on the line segment passing
through z1 and z2. �
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In summary, with some certain choice of g, the latent code
of the synthesized image produced by the adaptive convolu-
tion method can be made to lie on the line segment between
the codes of the two input frames, and instead of finding a set
of filters for each pixel, which is not resource-friendly, we can
find a suitable encoder and decoder. Finding these maps over
all possible functions, however, is a formidable task. The
encoder g should find a latent space so that the image space
and the latent space are homomorphic with respect to addition
and convolution. To make the matter worse, g should map
the set of adaptive filters of an image to a single scalar,
which requires that a coset of the kernel of g contain all the
filters. There can be many such functions, and yet there are no
clear objectives in order to find such a function. Fortunately,
we have a perfect tool for function approximation, which
is neural networks (NNs). Because an NN is a universal
approximator [10], it is able to approximate the true latent
space without needing satisfy all the requirements. Therefore,
we choose a CNN, a special type of NN, as the encoder, which
maps the image space to latent space, and another CNN as the
decoder, which performs the inverse mapping, and we train
both networks end-to-end because we have targets only for
the decoder, and none for the encoder. The requirement that g
should be a homomorphism can guide us to choose appropri-
ate activation functions for our network. For example, we can
choose LReLU as the network’s activation function, which is
a homomorphism up to some scaling constant. Thus, in all
of our experiments, we use LReLU and heuristically show
in the Results section that other functions, such as exponen-
tial linear unit (ELU) [5] and scaled exponential linear unit
(SELU) [18], which transform addition in the image space to
multiplication in the latent space, decrease the performance
of our model.

Above, we have pointed out at least one solution that
explains why our method works. However, which solution the
CNN determines in this case is still unclear. Because of the
vast selection of possible functions, the CNN can approxi-
mate the true function differently, and furthermore, even the
true function can take numerous forms other than the ones we
have discussed. We must admit that there is still a room for
theoretical work to be done in order to explain how interpola-
tion in latent space can induce interpolation in image space.

C. RELATIONSHIP TO CONDITIONAL VARIATIONAL
AUTOENCODER
Our study has a very close relationship with [46]. Con-
cretely, in [46], the authors employed a variational autoen-
coder (VAE) and condition on an input image to generate a
set of possible subsequent frames. To generate trajectories,
the VAE takes an image and a set of latent variables sampled
from a standardGaussian distribution and performs a series of
convolutions and downsamplings/upsamplings. The authors
observed that the latent variables encode motion directions.
Specifically, interpolating between motion prediction can be
done via interpolating between latent variables. However, this
type of interpolation is simply a blind walk in the latent

space, which makes most of the trajectories nowhere near
real motions. DeepLTE can be seen as a restriction on the
trajectories in latent space. DeepLTE allows only movements
on a plane containing the latent representations the input
frames, which guarantees more realistic motions in the inter-
polated images. In that sense, DeepLTE generates determinis-
tic trajectories to an input instead of probabilistic trajectories
as in [46].

D. RELATIONSHIP TO WASSERSTEIN AUTOENCODER
The autoencoder we employ in this study has a loose relation
with [43]. Both our study and [43] directly embed some
constraints on the latent space so that sampling is possible.
However, there are two fundamental differences. Firstly, [43]
aims to generate diverse images with any latent drawn from
a prior distributionwhile our goal is to synthesize neighboring
samples given some input images. Secondly, the constraint
we adopt in our study is deterministic while the one utilized
in [43] is probabilistic. Specifically, Tolstikhin et al. min-
imize a divergence between EX∼PX [Q(Z |X )] and a priorly
specified distribution PZ , where Z is a latent variable drawn
from a simple distribution PZ , X is an input data point drawn
from the data distribution PX , and Q(Z |X ) is the modeled
conditional distribution of Z given X . Both constraints in the
two studies require some simplifications and assumptions on
the true models and by imposing those, both can result in
reasonable performances.
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