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Abstract— Most full-reference image quality assessment
(FR-IQA) methods advanced to date have been holistically
designed without regard to the type of distortion impairing the
image. However, the perception of distortion depends nonlinearly
on the distortion type. Here we propose a novel FR-IQA
framework that dynamically generates receptive fields responsive
to distortion type. Our proposed method-dynamic receptive field
generation based image quality assessor (DRF-IQA)-separates
the process of FR-IQA into two streams: 1) dynamic error
representation and 2) visual sensitivity-based quality pooling.
The first stream generates dynamic receptive fields on the
input distorted image, implemented by a trained convolutional
neural network (CNN), then the generated receptive field profiles
are convolved with the distorted and reference images, and
differenced to produce spatial error maps. In the second stream,
a visual sensitivity map is generated. The visual sensitivity map
is used to weight the spatial error map. The experimental results
show that the proposed model achieves state-of-the-art prediction
accuracy on various open IQA databases.

Index Terms— Full-reference image quality assessment
(FR-IQA), dynamic receptive fields (DRFs), convolutional neural
networks (CNNs), dynamic filter networks (DFNs), human
visual system (HVS).

I. INTRODUCTION

IN RECENT years, the rapid industry rollout of globally
pervasive social media platforms and compressed image

transmission systems have had to contend with a plethora
of image quality degradations arising during the processes of
content acquisition, transmission and storage [1], [2]. Efforts
to improve these systems would greatly benefit from the devel-
opment of models that can predict perceived image quality as
accurately as possible. Accordingly, over the past few decades,
numerous full-reference image quality assessment (FR-IQA)
methods have been developed based on perceptual models
that seek to mimic the human visual system (HVS) responses
to distortion. However, designing an adequately detailed and
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holistic HVS model is an extremely difficult problem that is
far from being solved.

A. Limitations of Conventional IQA Methods

Most existing FR-IQA methods exploit specific,
well-understood visual characteristics, by mathematically
formulating them into image processing models and
algorithms. The simplest example is the peak signal-to-noise
ratio (PSNR) and mean square error (MSE), which are based
on the observation that the HVS is sensitive to differences
or error signals between a reference image and a distorted
version of it. More sophisticated approaches model basic
perceptual processes such as the structural similarity (SSIM)
model [3]. Other perception-driven IQA models include
[4]–[8], the Visual Information Fidelity (VIF) model [9],
which uses a perceptually relevant natural scene statistics
approach [10]–[13], and FSIM, which embodies phase
coherency in a SSIM-like computation [14].

Existing FR-IQA models have generally been developed
from a holistic point of view, meaning that they operate in
the same manner regardless of the nature of the distortion.
Since different types of distortion are perceived as different,
it is reasonable to believe that an image quality model could
exploit these differences in perception.

B. Dynamic Receptive Field Generation

Motivated by these observations, we developed an FR-IQA
framework that we term dynamic receptive field image quality
assessor (DRF-IQA). DRF-IQA exploits the advantages of
convolutional neural network (CNN) based deep learning
methods to model the highly non-linear responses of the
visual system to picture distortions of diverse types, spatial
characteristics, and severities. Our proposed deep learning
method is inspired by the following observation.

Humans with normal vision are quite good at perceiving
visual quality. Indeed, the sense of distortion is largely driven
by front-end, low-level processing. It may be viewed as a
pre-attentive response to degradations of the statistical struc-
ture of pictures induced by distortion [15]. This broadly drives
current high-performing holistic FR-IQA models. Humans per-
ceive distortion rapidly, and they also understand differences
in distortion appearance rapidly.

In this direction, we have developed a way to learn
a set of dynamic receptive fields responsive to different
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Fig. 1. Concept of dynamic receptive field generation for FR-IQA.

Fig. 2. Flow chart comparison of DRF-IQA and conventional FR-IQA. Gray
boxes indicate the deep-learning flow.

distortion types. Fig. 1 shows the DRF-IQA framework. The
dynamic receptive field generation module is motivated by the
generation network in [16]. It consists of a distortion encoding
network, which encodes the type of the distortion, and a
receptive field generation network, which generates dynamic
receptive fields having learned profiles using the distortion
code. The generated DRFs process the reference and distorted
images, then a perceptual error map is computed using a
simple distance metric.

Fig. 2 shows a comparison between conventional FR-IQA
models and DRF-IQA. Conventional methods compute local
error maps using hand-crafted features by modeling physi-
ological aspects of human visual perception. For example,
the well-known Gabor-wavelet decompositions are widely
used to model neuronal receptive fields in the primary visual
cortex [9], [17], [18]. Nonetheless, these approaches ultimately
yield limited quality prediction performance, because it is
exceedingly difficult to design a holistic model that is capable
of capturing the dynamics of each distortion. By contrast,
DRF-IQA is designed to dynamically generate receptive fields
responsive to the type of distortion.

To model the dynamic receptive fields, DRF-IQA employs
a fully convolutional end-to-end network that learns the map-
pings between visual perception and the distortions embedded
in IQA databases. We also introduce a new visual weighting
process to spatially pool the quality abstractions produced by
the network. The pooled scores predict the perceived degree
of each distortion by type.

Our contributions are summarized as follows:
1) We create a first-of-kind DRF generation based FR-IQA

framework implemented as an end-to-end CNN model.

2) The DRFs and visual pooling weights are learned with-
out injecting any prior knowledge of the HVS.

3) Our learned IQA model achieves state-of-the-art image
quality prediction performance.

The remainder of the paper is organized as follows.
Section II introduces related work recent deep learning-based
IQA models. Section III describes the architecture of the
DRF-IQA framework, including the implementations of DRF
generation, spatial pooling, and the training procedure.
Section IV discloses and explains the experimental results of
testing DRF-IQA under various ablation protocols. In addition,
visualization and analysis of the trained deep model are
presented. Lastly, concluding remarks are given in Section V.

II. RELATED WORKS

A. Image Quality Assessment

Image quality assessment models are usually classified
into one of three categories: FR-IQA, which utilizes the
distorted image and a reference to produce quality predictions,
reduced-reference IQA (RR-IQA) which only uses incomplete
reference information, and no-reference IQA (NR-IQA) where
quality is predicted without using any reference information.

FR-IQA has been widely applied to gauge the performance
of image/video transmission systems and lossy video compres-
sion [19], [20]. Popular perceptual FR-IQA methods include
SSIM [3], feature similarity (FSIM) [14] and visual informa-
tion fidelity (VIF) [9] which are based on the measurement
of perceptual distances between possibly distorted images and
their references [3], [9], [14]. While these are widely used,
these and similar FR-IQA incorporate handcrafted models of
distortion perception, which are inevitably incomplete given
the vast range of possible distortion types, severities, and mix-
tures. This, of course, limits their performances in applications.

B. Dynamic Filter Network

Ordinarily, the filters learned by a traditional convolutional
layer remain fixed after training. Our dynamic filter network
generates filters that adapt to the input and that change as
new samples are introduced [16]. The concept of dynamic
filter generation has been used in a variety of recent computer
vision applications [21], [22].

C. Deep Learning-Based IQA Models

A variety of ways to apply deep learning to the IQA
problem have been recently proposed [23]. Hou et al. pro-
posed a deep belief network (DBN) model using NSS-related
features expressed in the wavelet domain [24]. Similarly,
Li et al. derived deep-learning based DoG features which
they regressed on quality scores [25]. Ghadiyaram and Bovik
developed a large number of NSS features which they used
to train a DBN to predict image quality [26]. However, these
approaches utilized handcrafted features and small datasets,
hence could not fully exploit the advantages of deep learning
methods.

Another recent end-to-end CNN model was trained on
many image patches, each labeled by the global mean opinion

Authorized licensed use limited to: Yonsei Univ. Downloaded on February 03,2021 at 12:06:38 UTC from IEEE Xplore.  Restrictions apply. 



KIM et al.: DRF GENERATION FOR FR-IQA 4221

Fig. 3. Flow diagram of the DRF-IQA framework.

score (MOS) of the entire image it is part of. Bosse et al.
developed a model that spatially pools image quality over a
set of image partitions using CNN model [27], again training
on global image scores. Oh et al. applied patch based CNN
model into stereoscopic 3D IQA by local to global feature
aggregation [28]. Seo et al. incorporated measures of visual
saliency and just noticeable difference (JND) into a CNN
model to extract perceptually important features [29]. Other
authors have used models of visual sensitivity to perceptu-
ally configure the network [23], [30], [31]. Another recent
CNN-based FR video quality assessment (VQA) employs
temporal HVS properties as intermediate training targets of
the CNN [32]. An attentional temporal pooling model was
also used in this end-to-end optimization. Our new DRF-IQA
model, which generates DRFs and deploys a new visual
sensitivity model, achieves state-of-the-art prediction accuracy,
which we support with strong visualizations.

III. DRF-IQA FRAMEWORK

The overall flow of the DRF-IQA framework is depicted
in Fig. 3. The model is implemented as an end-to-end CNN,
which processes two data streams: Stream 1 is a dynamic
error representation, while Stream 2 is a visual sensitivity
based pooling network. Each distorted image, corresponding
reference image, and a spatial error map are fed into the shared
CNN network. In Stream 1, the distortion encoding network
encodes each input in accordance with characteristics of distor-
tion. Next, the encoded distortion-specific information is used
to generate DRFs using the receptive field generation network.
Next, in the dynamic error representation, the input image
pair is convolved with the generated DRFs, and channel-wise
subtraction is conducted to create the dynamic error maps.
Stream 2 takes the output of the shared network as an input,
and generates a single-channel sensitivity map. The pixels
in the dynamic error maps are then weighted by the values
of the sensitivity map. Global average pooling (GAP) is
then used to obtain the overall quality score [33]. Finally,
the predicted score is regressed onto the subjective score in a
supervised manner. The details of the dual-stream architecture
are explained in Section III-A.

A. Model Architecture

1) Motivations: The design of the DRF generator is inspired
by [16], while the visual sensitivity based pooling model is
derived from [30], [32]. The most intuitive way to gener-
ate the DRFs is to process the input maps (the distorted
image, reference image, and spatial error map), then infer
distortion information, and then output the DRFs using the
inferred information. In this way, the model is able to gen-
erate DRFs that reflect distortion information. In Stream 2,
a sensitivity map is obtained along with the dynamic error
maps. A U-Net architecture is used to generate the sensitivity
map.

2) Model Design: DRF-IQA operates on multiple patches,
drawn viz., both the distorted and reference images are par-
titioned into patches of the same sizes, which are fed into
the system for inferencing in Section III-E. Each layer in
Streams 1 and 2 uses a 3×3 convolutional filters and a ReLU
activation function [34]. However, Streams 1 and 2 terminate
with linear and sigmoid activations, respectively. In this way,
each generated DRF is made to be zero-centered by the linear
activation, while the sigmoid activation distributes the values
of the sensitivity map between 0 to 1. As shown in on the left
side of Fig. 3, the processed inputs of Streams 1 and 2 both
enter the shared network. In the shared network, only convo-
lutional layers are utilized to avoid losing spatial information.

B. Shared Network

The shared network serves a preprocessing stage. Three
inputs are processed to produce feature maps: the distorted
image, the reference image, and the spatial error map. Given an
input distorted image Xdis and reference image Xre f , a spatial
error map is obtained as an objective error signal, in the
following manner.

Rather than using a simple squared-error distance metric
between the reference and distorted samples, which can result
in many zero values, and adversely affect both training conver-
gence and application, we instead define a spatial error map eS

as a normalized and shifted log difference yielding a non-zero
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Fig. 4. Architecture of stream 1: the distortion encoding network and dynamic receptive field generating network. “Conv” represents the convolutional layers,
while “dense” repres5ents fully connected layers. The text below “Conv” indicates the size of the filters. The red arrow represents the convolution operation.

centered distribution as in [30], [32]:

eS = log(1/((Xref − Xdis)
2 + ε/2552)

log(2552/ε)
, (1)

where we use ε = 1 in the experiments. Each map is then

individually fed into four convolutional layers (the number of
filters is 32 in each layer), then their outputs are concatenated
and used as the input the two streams.

C. Stream 1: Dynamic Error Representation

1) Distortion Encoding Network: The general architecture
of stream 1 is shown schematically in Fig. 4. To generate DRFs
responsive to input distortions, it is necessary to analyze the
input distortion. Since there are no labels available regarding
the type or degree of distortion, it is instead directly encoded
by a convolutional encoding network.

To encode the input maps, three convolutional networks
with 3×3 subsampling are used. Let us denote the procedure
of network encoding by f (·). As a way of showing that the
encoded feature maps f (·) are able to capture distortions
by type, Fig. 5 visualizes the distribution of encoded feature
maps using t-SNE [35] applied on the TID2008 image quality
dataset, which contains 17 distinct distortion types, as depicted
in Fig. 5 (a), while five of the more common distortion types
are visualized in Fig. 5 (b): AGN, spatially correlated noise
(SCN), Gaussian blur (GB), JPEG compression and mean
shift (MS). Each distortion type is clearly encoded.

2) Receptive Field Generating Network: As shown in Fig. 4,
the generating network g(·) is implemented using a few
fully-connected layers, where the last layer contains 1296 neu-
rons, corresponding to N receptive fields of resolution 9×9.

We denote the generated receptive fields as Qn , where
N is the number of receptive fields (n = 1, . . . , N).
We fixed N = 16 to achieve a broadly representative set of
distortion-sensitive receptive fields. Fig. 7 shows a 3D visu-
alization of the sixteen generated DRFs trained on the LIVE
IQA database, along with cross-sections of them. As shown
in the figure, the generated DRFs include various shapes,
scales and orientations. In addition, it may be seen that the
cross-sections of the DRFs exhibit similar similar appearance

as classical receptive field models (e.g., Gabor wavelets).
Detailed examples are given in Section IV-F.

3) Dynamic Error Representation: Once the model is
trained to generate DRFs, a 2D convolution operation is
applied to each input image pair (reference and distorted
images). As shown in Fig. 4, there are N = 16 responses
corresponding to both the reference and distorted images.
Each response is then subjected to separate subtraction and
max operations. The perceptual error map is produced by
the channel-wise subtraction between the two response maps,
while the max operator is applied on both responses R̂re f and
R̂dis to produce an importance map. Since not all of the spatial
regions within an image are deemed to be distorted, those that
are not included in the maps.

The dynamic error representation procedure is expressed
precisely as follows. We use convolution with stride one and
zero padding at the image borders. Then each response is
denoted as R̂re f and R̂dis in R

N×H×W, where H and W are
the height and width of input image. The nth response map is
defined as

R̂
n
k = Qn ∗ Xk | k ∈ {re f , dis} (2)

where ∗ is convolution, and Qn is the nth receptive field
generated as explained in Section III-C. Then, the dynamic
error maps are defined by concatenating the response error
maps and the importance map as follows

edyn = CONCAT[er , em ], (3)

where er is the set of response error maps defined by
er = |(R̂re f − R̂dis)| and the importance map is given by
em = max(R̂re f , R̂dis).

D. Stream 2: Visual Sensitivity Pooling

1) Visual Sensitivity Generation Network: Following
prior work on the use of CNN-based sensitivity maps
[23], [30]–[32], we designed an intuitive way to spatially
weight the values of the spatial error map, using a generative
approach (by generating a target from the encoded data) using
the networks in [37], [38]. Fig. 6 shows the visual sensitivity
generating network, denoted as v(·). The network uses a U-Net
structure [37] to preserve the dimension of the sensitivity map.
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Fig. 5. t-SNE scatter plot of the output of the distortion encoding network on the TID2008 database [36]. The database includes 17 distortion types.
(a) t-SNE for over all distortion types. (b) t-SNE over five common distortion types. Notice that each encoded feature sample is coherently clustered according
by distortion type.

Fig. 6. Architecture of stream 2: the visual sensitivity generating network.

Moreover, the generated sensitivity map is weighted by the
dynamic error maps which contain unique perceptual error
signals produced by the DRFs. The network accepts the
preprocessed input maps output by the shared network. Three
convolutional layers with 2×2 subsample layers then encode
the visual sensitivity information, and three dilated convolu-
tional layers upsample the encoded feature maps. The skip
connections between the encoding and upsampling paths are
implemented via a concatenation operator.

2) Visual Sensitivity Based Spatial Pooling: After passing
through the visual sensitivity generating network, the dynamic
error representation edyn is weighted by the sensitivity map,
as shown in Fig. 3. Then, the weighted maps are fed to
the two convolutional layers, and the final feature maps are
regressed onto predicted subjective scores, followed by the
GAP operation. Since DRF-IQA is patch based, the overall
predicted score is averaged over all the patches in each image
sample. Therefore, the final predicted quality score of the
distorted image is

spred (Xd , Xr ; θ f,g, θv) = 1

M

∑

i∈M

h(ew; θ f,g, θv), (4)

where M is the number of patches in the image sample,
Xd , Xr are the distorted and reference images, and θ f,g, θv are

Fig. 7. 3D Visualization of the sixteen generated dynamic receptive
field profiles and their horizontal cross sections. The DRFs are resized to
64×64 and the model was trained on the LIVE IQA database [39]. Note that
each map has a different scale that has been normalized to [0, 1].

intrinsic CNN parameters, respectively. Let ew be the sensi-
tivity weighted dynamic error representation maps defined by

ew = edyn � s (5)

where � is the element-wise product. The loss function is the
mean-squared error between the predicted and ground-truth
subjective scores

Lmse = ||spred − ssub||2F ,

where ssub is the subjective score label (MOS) of the image
sample. In addition, a total variation (T V ) term was used
to alleviate high-frequency noise in the sensitivity map. T V
regularization is defined as

T V (s) = 1

Hs · Ws

∑

(i, j )

(shorz(i, j)2 + svert (i, j)2) (6)

where Hs and Ws are the height and width of the sensitivity
map, and shorz and svert are Sobel-filtered (directional deriv-
ative) sensitivity maps taken in the horizontal and vertical
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directions, respectively. Moreover, L2 regularization is applied
to all the layers to avoid overfitting, as in [30]–[32]. Finally,
the loss function that we utilized to perform the overall training
process is given by:

Ltotal = Lmse + λ1 · LT V + λ2 · Ll2 (7)

where λ1 and λ2 are the relative weights of LT V and Ll2,
respectively.

E. Training Strategy

Once the input (Xd , Xr , e) is prepared, it is partitioned
into patches of equal size. In our experiments, the patch size
si zepatch was set to 112×112. After each patch is processed
by their individual CNN models, they are averaged to obtain a
predicted score, on each image sample. For example, if there
are 12 patches in an image sample, then M=12 in (4), and the
final predicted score is obtained by averaging the 12 outputs
of the CNN model. Note that the loss function is not obtained
for each patch sample, but rather on all patches in the image
unit.

To achieve better convergence, the adaptive moment esti-
mation optimizer (ADAM) was used [40] rather than the
usual form of stochastic gradient descent. We used the default
hyperparameters suggested for ADAM in the literature [40],
and the momentum parameter was set to 0.9. The learning rate
was initially set to 0.001, then multiplied by 0.1 after every
10 epochs, to achieve stable optimization. Finally, the weight
parameters were fixed at λ1 = 1 × 10−5 and λ2 = 5 × 10−4,
respectively.

IV. EXPERIMENTAL RESULTS

A. Dataset

We benchmarked our proposed deep IQA engine on five
well-known public datasets: LIVE IQA [39], CSIQ [41],
TID2008, TID2013 [36], and LIVE Multiply Distorted
(LIVE MD) [42]. Since DRF-IQA is a full-reference model,
the benchmarked datasets all include both reference and dis-
torted images. The LIVE IQA database contains 29 reference
images and 799 distorted images impaired by five distor-
tion types: JPEG and JP2K compression, white noise (WN),
Gaussian blur (GB), and Rayleigh fast-fading (FF) channel
distortion. The CSIQ image database includes 30 reference
images and 866 distorted images with six applied distortion
types: JPEG, JP2K, WN, GB, pink Gaussian noise (PGN),
and contrast distortion (CTD). TID2008 contains 25 reference
images and 1,700 distorted images with 17 different distortions
at four levels of degradation, whereas TID2013 expanded this
to include 3000 distorted images with 24 distortion types at
five levels of degradation. The LIVE MD database includes
15 reference images and 405 distorted images, each degraded
by two types of distortion. Some are corrupted by GB followed
by JPEG (GB+JPEG), while others are corrupted by GB
followed by WN (GB+WN). All MOS or DMOS values in
these databases were scaled to [0, 1], where 1 equates to the
best quality.

B. Evaluation Metrics

To validate the performance of DRF-IQA, we employed two
standard measures: Spearman’s rank-order correlation coef-
ficient (SROCC) and Pearson’s linear correlation coefficient
(PLCC) [43]. A value close to 1 for SROCC and PLCC refers
to higher performance in correlation. We compared our model
against several state-of-the-art IQA methods. We first ran-
domly divided the reference images into two content-separated
subsets (80% for training and 20% for testing) along with
their corresponding distorted images. Since DRF-IQA was
trained in a non-distortion-specific way, all of the distor-
tion types in each database were considered simultaneously.
The correlation coefficients of the testing model were aver-
aged after the experiment was repeated 20 times, each time
randomly dividing the training and testing sets to eliminate
the performance bias (cross-validation). When measured on
all the databases, the standard deviations of SROCC and
PLCC after 20 repetitions were less than 0.01 except on the
LIVE MD dataset, where a relatively higher standard deviation
was obtained likely because of the increased difficulty of
dealing with multiple distortions. To augment the number
of training data, horizontally flipped version of the images,
along with the same labels, were included. During training,
an early stopping scheme was used to avoid overfitting. In the
experiments, implementation was carried out using the Theano
library on the Python 3.5 platform. The GPU and CPU
were the RTX2080 and Intel Xeon Gold 6140, respectively.
Using this setup, the training time was 6.58 min/epoch on
the TID2008 database. We compared DRF-IQA against ten
FR-IQA models: PSNR, SSIM [3], MS-SSIM [44], VIF
[9], GMSD [45], FSIMc [14], DoG-SSIMc [25], IFC [46],
DeepQA [30], WaDIQaM-FR [27] and also six NR-IQA
BLIINDS II [11], BRISQUE [47], BIECON [48], DIQA [31],
NIMA [49], and DIQaM-NR [27].

1) Performance on Individual Databases: Table I lists
the performances of the compared FR/NR-IQA models on
each of the IQA databases. The bold fonts indicate the
three top-performing models on each database. Furthermore,
the weighted averages of the SROCC and PLCC scores over
the five databases (LIVE, CSIQ, TID2008, TID2013, and
LIVE MD) are also recorded in the last column. The weight
given to the scores from each database was proportional
to the number of images contained in each, to maintain
per-image parity. Among the FR/NR-IQA models, the deep
learning-based methods generally delivered superior perfor-
mance relative to previous automatic and “hand-crafted” meth-
ods. DRF-IQA attained the highest correlation with respect
to human subjectivity on most of the databases, and also in
terms of the across-database weighted average. It performed
exceptionally well on both TID2008 and TID2013, which are
difficult because of the large varieties of distortion types they
contained. In addition, DRF-IQA generally performed very
well in terms of SROCC. In the experiment, the convergence
was generally very fast on all the datasets, and the best result
was obtained after ∼30 epochs.

2) Performance on Individual Distortion Types: Table II
reports the SROCC and PLCC of the compared FR/NR-IQA
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TABLE I

SROCC AND PLCC COMPARISON OF IQA MODELS ON FIVE IQA DATABASES. Italics INDICATE DEEP LEARNING-BASED METHODS

algorithms according to the type of distortion. The best three
models for each distortion are again shown in bold. Since
DRF-IQA is a holistic IQA model, it was trained on all
the distortion types, then tested on each different distortion
type. Nonetheless, DRF-IQA delivered the best performance
on most distortion types. On the TID2013 database, it achieved
top-3 prediction accuracy on most of the distortions.

However, since DRF-IQA is currently trained only on
luminance, it could not accurately predict CCS, where color
information is the major cue of distortion. On the LIVE
IQA database, it outperformed most of the other FR/NR-IQA
methods by a wide margin. On the CSIQ database, the overall
performance of DRF-IQA was again generally superior. On the
LIVE MD database, it delivered the best performance by a
wide margin.

C. Ablation Study

We also conducted an ablation study. The training and
testing sets were again split as the above training procedure.
In each test, the SROCC and PLCC scores on the LIVE IQA
and TID2008 were obtained, respectively.

We conducted four ablation tests with respect to the con-
tributions of the dynamic error maps, response error maps,
importance map and sensitivity map. First, we tested the model
without including the dynamic error representation which
calculates perceptual error signals from the generated DRFs.
To test this model (DRF-IQA w/o dynamic error maps) in (3),
the visual sensitivity based pooling h(·) function was directly
connected to the generated DRFs. In other words, the model
works as a simple CNN regression model on the three input
maps (distorted, reference and spatial error maps). Second,
we removed the response error maps for the two response
maps (R̂dis and R̂re f ), which measure the perceptual distances
between the distorted and reference images. To evaluate the

ablation of the response error map (DRF-IQA w/o response
error maps), the response maps of the distorted and reference
images were simply concatenated. They were then directly
input to the visual sensitivity based pooling h(·) function to
regress the predicted score. We then studied the performance
of DRF-IQA without the importance map (DRF-IQA w/o
importance map), DRF-IQA without the sensitivity map (DRF-
IQA w/o sensitivity map) and the full version of DRF-IQA
(DRF-IQA full). To test the importance map, the dynamic
error maps were calculated using only the response error
maps without the importance map in (3). Similarly, to test
the sensitivity map, DRF-IQA was trained with dynamic error
maps but without weighting by the sensitivity map in (5).

Table IV shows the performance comparison for the four
ablation test models against DRF-IQA full. As shown in
the table, DRF-IQA w/o dynamic error map delivered worse
performance than the other models, since the perceptual error
plays a very important role in the proposed model. Neverthe-
less, it still operates as a simple CNN-based regression engine
with reliable performance. The performance of DRF-IQA w/o
response error maps was slightly higher than that of DRF-IQA
w/o dynamic error maps, but it was still less effective than
using the distance between the two responses. Moreover,
it may be observed that removing either importance map or
sensitivity map lowered the performance relative to DRF-IQA
full on both databases, with the effect being more pronounced
on the larger TID2008 dataset.

D. Effect on the Parameters of DRFs

To study the attained performance against the parameters
of DRF-IQA, we tabulated the metric scores while varying
the number and sizes of the DRFs. Table III shows the
performance comparison for three different sizes of DRFs
and varying numbers of DRF channels. As tabulated in
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TABLE II

SROCC OF COMPARED IQA MODELS ON INDIVIDUAL DISTORTION TYPES. ITALICS INDICATE DEEP LEARNING-BASED METHODS

TABLE III

SROCC AND PLCC COMPARISONS AS A FUNCTION OF DRF
CHANNEL SIZE AND THE NUMBER OF DRFS, ON THE

LIVE IQA AND TID2008 DATABASES

the Table, the overall performance was unarguably high for
each single test, but when learning larger DRFs (9×9),
as might be expected. when the number of DRFs was varied

TABLE IV

SROCC AND PLCC COMPARISONS ON THE

LIVE IQA AND TID2008 DATABASES

(8 and 16 DRFs were used for sizes 3×3 and 5×5, while
32 and 64 were also used for 9×9 DRFs). For the 3×3 and
5×5 models, using a larger number of channels yielded higher
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Fig. 8. Examples of predicted error maps using generated DRFs. (a), (e), (i), and (m) are images with three distortion types (AGN, JPTE, and two Block).
(b), (f), (j) and (n) are spatial error maps for each distorted image. (c), (g), (k) and (o) are the DRFs generated on each distorted image and (d), (h), (l) and (p)
are the error maps.

performance. However, for the 9×9 DRFs, the performance
did not improve beyond 16 DRFs, which may be a limit
imposed by the network size.

E. Cross Dataset Test

To test the generalization ability of DRF-IQA, we con-
ducted a cross-dataset test. In this experiment, we tested both
DRF-IQA w/o the sensitivity map and DRF-IQA full, as was
done on the previous ablation set. The models were trained
on a subset of the TID2008 database, then tested on the
LIVE IQA database. Since TID2008 contains broader kinds
of distortion, we only used five distortion types (JPEG, JP2K,
Additive Gaussian noise (AGN), GB, and JPEG transmission
errors (JPTE)) to match the LIVE IQA database more closely.
The SROCC results are shown in Table V. As may be seen,
both DRF-IQA w/o sensitivity map and DRF-IQA full yielded
excellent performances on the LIVE dataset. More importantly,
the performance was not biased towards or away from any
specific distortion type. On the contrary, when testing on all
the distortion types of the TID2008 dataset, after training on
the LIVE dataset, DRF-IQA was less able to predict human
judgments of distortions it had not been exposed to. This
means that the generated DRF did not play an effective role

TABLE V

CROSS DATASET TEST ON THE LIVE IQA DATABASE (SROCC)

in determining distortion types which are not in the training
data set.

F. Visualization Results

Here we visualize the designed DRFs and the error repre-
sentations generated by Stream 1, while varying the type of
distortion. We also analyze the sensitivity map in Stream 2.

1) DRFs: In Fig. 8, the generated DRFs, their response
error maps and their spatial error maps are compared for
four types of distorted images. The “I14” distorted images
from the TID2008 database were used to show the results.
For accurate visualization, this image was not included in
the training set. The Figure shows the patch partition and
the corresponding results of processing via Stream 1. The
four images in the first column are images distorted with
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Fig. 9. Energies of the generated DRFs for each distortion type in the (a) TID2008 and (b) LIVE IQA databases, respectively.

AGN, JPTE, and two block distortions, respectively. The sec-
ond column shows the spatial error maps, where darker regions
indicate more distorted pixels. The 16 DRFs generated on each
distorted patch images are shown in the third column, and
the error maps are in the fourth column. For AGN (a)-(d),
the distortion is distributed uniformly over the image, and
the generated DRFs also have supported over the entire
image. However, for the other distortion types, the gener-
ated DRFs are only supported over local areas where errors
occur. Interestingly, some of the generated DRFs have similar
structures across all the distortion types, while the struc-
tures of other DRFs are different, depending on the type of
distortion.

We also investigated the coefficient distributions of the
DRFs to better understand how distortion-specific DRFs are
generated. Toward this, define the energy of the generated
DRFs as follows: ED RF = ∑

n
∑

x∈N2 Qn(x)2, where Qn(x)
are the generated DRFs (n = 1, . . . , N). The energy of each
DRF influences the impact of the error maps since humans
make non-linear visual quality judgments depending on the
type of distortion. In this regard, DRF-IQA generates differ-
ent DRF energies for each type of distortion. For example,
the error representations of the four distorted images in Fig. 8
clearly have different energy distributions. Fig. 9 statistically
plots the mean and standard deviation of the energy of the
each of the generated distortion-specific DRFs, on TID2008
(Fig. 9 (a)) and on LIVE IQA (Fig. 9 (b)). As may be seen,
the DRF energies vary by distortion. In particular, the DRFs

generated by extremely unrealistic distortions, such as block
distortion have stronger energies than other DRF types.
In other words, when the perceptual error signals associated
with some distortion type(s) become very strong, the energy
of the corresponding generated DRFs significantly increases
to better map predictions to non-linear human judgments.

2) Visual Sensitivity: To determine whether the visual sensi-
tivity map agrees with perception, four reference and distorted
image pairs, the spatial error maps generated on them, and the
corresponding visual sensitivity maps are shown in Fig. 10.
The images are impaired by four different distortion types
(AGN, MN, QN, and JP2K). Figs. 10 (c), (g), (k), and (o)
are the spatial error maps obtained using (1), while
Figs. 10 (d), (h), (l), and (p) are the corresponding predicted
sensitivity maps. Darker regions in the spatial error maps
indicate more distorted pixels. Darker regions in the sen-
sitivity maps indicate decreased sensitivity to distortion. In
Figs. 10 (a)-(b), the AGN around the sky region is more
noticeable than on the sea regions, as indicated by Fig. 10 (d).

On the image with masked noise in Figs. 10 (e)-(f), regions
having high spatial frequencies are assigned lower weights,
as shown in Fig. 10 (h). In the case of QN, the objective
error is strongly distributed over the entire image (Fig. 10 (k)).
However, edge regions are given lower weighting, as shown
in Fig. 10 (l). For the image distorted by JPEG 2000
(Fig. 10 (m)), the textured forest region is given reduced
sensitivity. Broadly, the visual sensitivity map agrees with the
effects of visual contrast masking.
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Fig. 10. Examples of generated sensitivity maps. (a), (e), (i) and (m) are four different reference images, while (b), (f), (j) and (n) are distorted versions
of them with AGN, MN, QN and JP2K, respectively. The spatial error maps of the distorted images are shown in (c), (g), (k) and (o), while the predicted
sensitivity maps computed on the distorted images are shown in (d), (h), (l) and (p).

V. CONCLUSION

We have proposed a novel approach to the FR-IQA prob-
lem using a dual-stream CNN. By dynamically generat-
ing receptive fields, the proposed model is able to assess
image quality in a manner that closely agrees with per-
ception. Through rigorous simulations, we demonstrated that
the predicted DRFs and sensitivity maps agree with per-
ception. Indeed, DRF-IQA achieves state-of-the-art perfor-
mance on various IQA databases. In the future, we plan to
advance the proposed framework for the challenging NR-IQA
problem.
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