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ABSTRACT

In this paper, we propose a new convolutional layer for neural
networks on unordered and irregular point set. Most research
advanced to date usually face multiple problem related to point
cloud density and may require ad-hoc neural network architec-
tures, which overlooks the huge treasure of architectures from
computer vision or language processing. To mitigate these
shortcomings, we process a point set at its distribution level by
introducing statistical convolution (StatsConv). The spotlight
feature of StatsConv is that it extracts various statistics to char-
acterize the distribution of the input point set, which makes
it highly scalable compared to existing point convolution op-
erators. StatsConv is fundamentally simple, and can be used
as a drop-in in any contemporary neural network architecture
with negligible changes. Thorough experiments on point cloud
classification and segmentation demonstrate the competence
of StatsConv compared to the state of the art.

Index Terms— Point Cloud, Convolution, Geometry,
Deep Learning

1. INTRODUCTION

Convolutional neural networks (CNNs) [1] have easily been
the most impactful factor to complex intelligent systems re-
cently [2–7]. Thanks to them, the states of the art of various
tasks in computer vision and natural language processing have
been heightened rapidly. However, most of the achievements
are in domain where signals are regularly distributed over tem-
poral or spatial grids. In irregular domains, their performance
is nowhere near that in the regular counterparts.

3D point processing is important as there is no overhead
of converting point cloud to other regular representations like
voxels, which also reduces the risk of losing information [8],
but an effective and common way to process a point cloud
has not yet been established. In our point of view, there are
three main difficulties mounting to this shortcoming. Firstly,
to apply common operators (for e.g., convolution), a locality
of points must be predefined, but it is not obvious how to ef-
fectively do this. Secondly, the semantics of a point cloud is
independent of the point order, which implies the learned func-
tion should be permutation-invariant. Lastly, a point cloud can
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be of arbitrary size, which makes a learning system struggle to
learn and scale.

Recently, there have been several studies investigating the
problem of deep learning on unstructured point set [9–17].
PointNet [9] and its succession, PointNet++ [10], are the two
flagships to tackle this problem. In general, they learn multi-
layer perceptrons (MLPs) to process input point clouds, and
resort to max pooling to achieve permutation invariance. How-
ever, PointNet and PointNet++ are engineered network archi-
tectures, so they are not versatile and are difficult to blend into
other networks. Also, max pooling throws away information
which might be helpful to make inference about the input [18].

Zaheer et al. [13] proposed a set convolution layer which
learns a permutation-invariant and/or -equivariant by means of
max and sum operators, but these are very simple operators and
may not capture and propagate all the necessary information
about the point cloud to the next layer.

PointCNN [14] learns a linear transformation per neigh-
borhood to weight and permute a subset of points, and then
performs the usual matrix multiplication to map the point
cloud to another space. However, learning that way does not
guarantee permutation-equivariance/invariance.

In this paper, we propose a novel convolution operator
based on the statistics of the point cloud. Our formulation
consists of a global feature, which is based on different mo-
ments extracted from the point cloud, and a per-point fea-
ture, which is a simple non-linear transformation of the input
point. The proposed convolution operator is a simple and
primitive LEGO cell, which allows us to construct suitable
architectures suited to any point set problem. We demon-
strate the competitive performance of the proposed operator
over existing states of the art in two tasks: point cloud clas-
sification and segmentation. For brevity, we dub our layer
as StatsConv. Code to reproduce the paper is available at
https://github.com/justanhduc/StatsConv.

2. PRELIMINARIES

2.1. Sufficient Statistics

In statistics, sufficiency principle concerns about finding a
sufficient statistic for the distribution parameters such that any
inference about the parameters of the distribution given the
sufficient statistic should be the same no matter what value of
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the random variable is observed. Following [19], the formal
definition of a sufficient statistic is recalled as follows:

Definition 1 (Sufficient statistics). A statistic T (X) is suffi-
cient for the distribution parameter θ if the distribution of the
sample X conditioning on the value of T (X) is independent
of θ.

The sufficiency principle is attractive in two aspects: (1)
the information about the “shape” of the distribution is fully
preserved, and (2) sufficient statistics is relatively robust to the
size of the sample thanks to the reduction. Thus, the sufficiency
principle offers a way to efficiently process unordered point
sets whose sizes are potentially large.

2.2. Sample Central Moments

In statistics, a moment is a quantitative measure that character-
izes the shape of a distribution. Sometimes, it is more common
to find the moments about the mean of a distribution, which
is called central moments. Mathematically, the kth central
moment is defined as:

μk = E[(X − E[X])k], (1)

where E[X] denotes the expectation of the random variable X .
In practice, the integral is usually intractable or the probability
density function is not available for interesting data, so one
has to resort to their estimations based on a random sample
drawn from the distribution, which is so-called sample central
moments. Given a random sample X containing observations
X , the sample mean (first moment) is calculated as:

X̄ =
1

|X |
∑

X∈X
X, (2)

and the kth sample central moment is given by:

μ̄k =
1

|X |
∑

X∈X
(X − X̄)k. (3)

The sample central moments are fairly simple and consis-
tent estimators. However, they are usually biased, and more
critically, they often are not truly sufficient statistics. Neverthe-
less, they can still be a good alternative when the parametric
form of the distribution is unknown.

3. STATISTICAL CONVOLUTION ON UNORDERED
POINT SET

3.1. Statistical Convolution

Figure 1 lays out a top view of the proposed method. Let X
be an unordered input point cloud and Xi ∈ X be a point in
X . A point Xi may contain any kind of features, which can be
3D coordinates, color information, or abstract features from
intermediate network layers. To reduce and fix the cardinality

Fig. 1: A schematic of StatsConv. StatsConv has two branches:
moment extraction and FC branches. In the moment extraction
branch, different moments are extracted and passed through
an FC layer before being linearly combined together. In the
second branch, the point cloud is mapped point-wise to another
space. The outputs of the two branches are concatenated.

of X without losing its “shape” information significantly, we
leverage the properties of the sample moments and extract
k different moments μ̄1, μ̄2, ..., μ̄k from the set X following
(3). To make the features more descriminative, we project
these moments into a new space by applying a non-linear
fully-connected (FC) layer:

μ̄′
i = fcσ(μ̄i;Wμ̄, bμ̄), (4)

where the trainable parameters Wμ̄ and bμ̄ are shared for all
the moments. Next, we reduce these moments to a single
feature vector by:

μ̄ =

k∑

i=1

wiμ̄
′
i, (5)

where each wi is a trainable scalar. This feature vector acts
as not only a global feature that encapsulates the semantics
but also a top-down local feature which captures most of the
interesting curvatures and twists of the point cloud distribution.
We refer to (5) as an all-reduce StatsConv.

In problems such as point cloud segmentation where we
are required to label each point, it is crucial to have a per-point
feature for every point in the input set. To do so, we simply
lift each point in the set to a new dimension via an FC layer:

X ′ = fcσ(X;W, b). (6)

To propagate the per-point and global features to the next layer,
we concatenate the two together and obtain the output as:

Y = X ′ ⊕ μ̄. (7)

Inspired by DeepSets [13], we propose another version
which propagates the sum of the per-point and global features:

Y = X ′ + μ̄. (8)

We note that for the same output dimension, the concatenation
version is “thinner” as the dimension of each of the outputs of
fcσ is only half of the output dimension.
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Our formulation of StatsConv bears some resemblance
to PointNet [9] and DeepSets [13]. In PointNet, the authors
proposed to extract point-specific feature, which promotes the
equivariance property, and global feature extracted by max
pooling, which makes the network invariant to point order.
Similarly, DeepSets also extracts per-point feature and lever-
ages max and sum operators to achieve both invariance and
equivariance. We note that max and sum are also statistics of a
random sample. In that sense, StatsConv can be seen as a gen-
eralization of PointNet and DeepSets. This implies that even
though permutation-invariance and equivariance are not our
original goal, StatsConv actually possesses these properties,
which we show in the next section.

3.2. Properties

Permutation Invariance. A function f is permutation invari-
ant if for any permutation π, we have:

f(X ) = f(Xπ), (9)

where Xπ = π(X ) is the same set X but having a different
ordering of elements. In other words, the function value is
independent of the order of Xi. Clearly, all the moments char-
acterize the distribution of the points, so they do not change
when the points are ordered differently. All the subsequent
transformations also do not concern about the set order, which
makes StatsConv invariant to permutation.

Permutation Equivariance. If a function is permutation-
equivariant, a permutation of the inputs results in the same
permutation of the outputs. In mathematical terms, a function
f is permutation-equivariant if:

f(X ) = f([Xπ(1), Xπ(2), ..., Xπ(n)])

= [fπ(1)(X ), fπ(2)(X ), ..., fπ(n)(X )],
(10)

where π is any permutation. Since FC transforms every point
in a point cloud individually and independently, it is obvi-
ously equivariant to permutation. Moreover, the global feature
derived from moments is permutation-invariance, and hence
permutation-equivariant. Thus, the formulations in (7) and (8)
are also independent of the point order.

Weak Set-Density Invariance. To demonstrate this, we
first show that the all-reduce version of StatsConv converges
to a fixed point as the point cloud density increases, which
enables the general StatsConv to be weakly density-invariant,
by proving the following theorem:

Theorem 1. The all-reduce StatsConv with an activation func-
tion continuous almost everywhere converges in probability
to a fixed constant defined by the population moments as the
sample size increases.

Proof. Suppose the activation function in (4) is continuous
almost everywhere. Let X̂(n) := X̄ and μ

(n)
i := μ̄i be

the sample mean and ith moment calculated from a random
sample of size n, respectively. By the weak Law of Large

Number, the sequence X̂(n) P→μ as n → ∞, i.e., the sam-
ple mean converges to the true mean in probability when the
sample size increases to infinity. Continuous Mapping The-

orem says that if X̂(n) P→μ, then it follows that μ(n)
i

P→μi

because the derivation of μ
(n)
i from X̂(n) in (3) is contin-

uous. Moreover, μ′(n)
i := fcσ(μ

(n)
i ;Wμ̄, bμ̄) also tends to

μ′
i := fcσ(μi;Wμ̄, bμ̄) thanks to the continuity assumption

of σ. Finally, by Slutsky’s Theorem, the linear combination
μ′(n) :=

∑k
i=1 wiμ

′(n)
i converges in probability to μ′ :=∑k

i=1 wiμ
′
i given the fact that each μ

′(n)
i converges in prob-

ability to μ′
i, and each wi is a constant. Thus, the all-reduce

StatsConv converges to a fixed point which is a weighted com-
bination of the population moments.

The proof above holds only when all the estimators of the
true central moments are unbiased. In practice, this might
not be the case. For instance, the unbiased estimator of the
variance is obtained by dividing by |X | − 1, not |X | as in (3).
Nevertheless, they are asymptotically consistent estimators of
the true moments, which means when |X | is large, the bias can
be negligible, so the theorem still holds up to some tolerance.

3.3. Implementation Details

In our implementation, if not mentioned otherwise, we set the
number of sample central moments to be six. Besides the cen-
tral moments, we also resorted to three order statistics which
includes max, min, and median. We utilized the same train-
ing/testing split and augmentation pipeline for both ModelNet
datasets and ShapeNet-part as PointNet [9].

We implemented ResNet18 [20] and UNet [21] for clas-
sification and segmentation, respectively. For both tasks, we
minimized the cost functions using SGD with a learning rate
3e-3 together with a momentum term of 0.9. For more details,
we refer readers to the Supplementary Materials.

4. EXPERIMENTAL RESULTS

4.1. Point cloud classification

The mean classification accuracies of all the benchmarking
methods on ModelNet10 is tabulated in Table 1. It can be seen
that for this classification task, our method is very competitive
against recent models, and even outperforms the state of the
art in ModelNet10. Interestingly, we failed to train PointNet
on ModelNet10 using the same settings for ModelNet40.

Table 2 delivers the image classification accuracies on
MNIST and CIFAR10. On MNIST, our StatsConv is highly
competitive to other models even though in our experiment,
we used only 160 points per cloud, which is far fewer than
the other competing models. On CIFAR10, while PointNet++
totally fails the task, our model still provides a meaningful
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Table 1: Classification accuracy (%) on ModelNet10 and Mod-
elNet40. The accuracy inside brackets is obtained in the case
of using only 128 points per cloud. Red, blue, and green
indicate the first, second, and third best results, respectively.

Method ModelNet10 ModelNet40
ShapeNets [22] 83.5 77.3

PointNet [9] 55.5 89.2 (87.1)
PointNet++ [10] - 90.7 (86.0)
DeepSets [13] - 87.1 (82.2)

ECC [15] 90.0 87.4
VSL [16] 91.0 84.5

StatsConv-cat 91.2 (90.2) 89.6 (88.7)
StatsConv-sum 29.7 89,3

StatsConv (max) 90.7 -
StatsConv (4 moments) 91.0 -

Table 2: Classification accuracy (%) on MNIST and CIFAR10.

Method MNIST CIFAR10
ECC [15] 99.1 -

PointNet++ [10] 99.5 10.0
StatsConv 99.0 64.4

Table 3: Mean IoU scores (%) on ShapeNet.

Method mIoU
3DCNN [9] 79.4
Yi et al. [17] 81.4
PointNet [9] 83.7
StatsConv 80.5

result. This reinforces our claim that a wholly-engineered
architecture like PointNet/PointNet++ might not be as versatile
as a building block like StatsConv as StatsConv is able to work
on many tasks and datasets with reasonable performance.

4.2. Segmentation

In this task, we validated the proposed UNet on the ShapeNet
part segmentation dataset [17]. As can be seen from Table 3,
our result is not quite close to existing work, but the perfor-
mance is still reasonable. Nevertheless, the UNet model here
was adapted with only minimal changes and not much effort
in parameter tuning. By a better setting of hyperparameters
and/or specific architecture tuning, it is expected that the model
achieves higher performance, but this is not our original goal.

4.3. Ablation study

Number of statistics. We demonstrated the influence of the
number of statistics on the performance in Table 1, which
shows the best results when using nine moments. Also, from
Figure 2, we can see that instances from semantically similar
classes (for e.g., table and desk or night stand and dresser) are
better separated in feature space when using the nine moments.

Bathtub

Bed

Chair

Desk

Dresser

Moniter

Night stand

Sofa

Table

Toilet

(a) (b)

Fig. 2: T-SNE scatter plot of the object features on Model-
Net10 test set when using (a) StatsConv with only max and (b)
the default StatsConv.

It can be concluded that the number of extracted statistics
influences the performance of StatsConv, and that employing
barely max/sum as in existing studies is not sufficient.

Weak invariance to set size. In Table 1, we demonstrate
the classification results when using only 128 points per cloud
in brackets. The results suggest that for StatsConv to work
properly, all we need is a representative point cloud so that its
moments can be reliably estimated, while its density is weakly
relevant.

5. CONCLUSION

We have introduced StatsConv, a general-purpose operator that
operates on unordered and irregular signal domains. We have
shown that much information about point sets can be retained
by modeling the point cloud distribution via means of sample
central moments. Our work generalizes some existing works
that relying on max or sum to aggregate the information of
point cloud as these operators are also statistics. The rigorous
experiments showed that our novel formulation surpasses the
state of the art in some benchmarks while remaining compet-
itive in some others even though we simply applied existing
architectures powered by StatsConv to these tasks.
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