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ABSTRACT Enhancing the quality of photographs is a highly subjective process and depends on users’
preferences. Hence, it is often more desired to let users choose their own best from a set of diverse and
adjustable enhanced images with astounding quality. However, a system that can satisfy this requirement
has not yet been established. While classical algorithms blindly enhance an image by filtering, recent
intelligent enhancement systems can only do it with limited styles through learning from a set of single
expert-retouched (ER) images. To fill this void, we propose a novel framework, Diverse and adjustable
Versatile Image Enhancer (DaVIE), that learns from multiple ER images simultaneously. Thereby, it can
output diverse results without being bound to a specific enhancement style while allowing users to freely
adjust the level of enhancement. For ease of diversity, we adopt a variational auto-encoder (VAE) that learns
stochastic distribution of enhancement styles. By using the VAE, the proposed model provides diversely
enhanced images. To establish better control in terms of enhancement level, we propose a more general
form of adaptive instance normalization and loss functions, which can afford even extreme image editing.
Through rigorous experiments, we demonstrate that the proposed DaVIE framework yields visually pleasing
and diverse results. We also show the proposed model quantitatively outperforms existing methods on the
MIT-Adobe-5K dataset. Furthermore, through a strict user-study, we show that the users consider the
qualities of ER images and machine-retouched images to be similar, with about 35% selection probability
for DaVIE enhanced images.

INDEX TERMS Diverse image enhancement, adjustable learning, automatic photo enhancement, variational
autoencoder, adaptive-instance normalization.

I. INTRODUCTION
Digital photography has been a revolutionary advancements
in human artistic expression. With the emergence of inno-
vative digital imaging technology, users can enjoy taking
photos more easily regardless of time and place. However,
individual users have their own preferences or purposes to
capture a given real-world scenario [2]–[4]. So, users fre-
quently want to retouch the captured photograph for their
satisfaction. Thus, it becomes more and more important to
provide user-friendly image manipulation tools and photo-
graph enhancement techniques.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiachen Yang .

For many years, semi-automatic photo-retouching soft-
ware such as Lightroom andPhotoshop have been dominating
this field. These software provide traditional image process-
ing tools such as histogram equalization, denoising, deblur-
ring, contrast enhancement, adaptive adjustments, and color
mapping [5]–[9]. However, the quality of editing requires
user’s aesthetic outlook, software familiarity, and a deeper
understanding of image processing algorithms, which causes
high barriers to entry. Therefore, most users spend a long time
familiarizing themselves with these tools. With the ongoing
technological advancements, users should have access to a
simple yet powerful image enhancement system that can
satisfy a wide range of preferences.

Deep-learning techniques [10] have been successfully
applied in photograph enhancers that allow users to enhance
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FIGURE 1. Examples of the original image, the five expert-retouched images (experts A to E), and the six diversely enhanced images by DaVIE
(DaVIE 1 to 6) with their enhancement level adjusted. The control parameters λ for the three enhancement levels Original, Natural, and Strong are
set to 0, 1, and 3, respectively.

TABLE 1. Results of subjective rank test on MIT-Adobe-5K. The average
rank score and standard deviation (std.) are reported for each
expert-retouched set. Twenty-one subjects assessed the rank (Best (5) to
Worst (1)) for randomly selected 100 sets (each set includes five ER
images) on MIT-Adobe-5K.

images to expert-level images automatically [11]–[14]. The
MIT-Adobe-5K dataset [1] having 5K natural images and
five corresponding expert-retouched (ER) images have been
widely used for training them. However, most studies focused
on only one type of ER images (mostly by expert C) while
ignoring the rest; thus the learned style is unavoidably biased
towards a specific preference for an expert. As depicted
in Fig. 1, the five retouched styles (ER A to E) vary signif-
icantly. Based on this, we first performed a user-study that
measures the users’ subjective ranks of the five expert styles.
Table 1 provides the result of the subjective rank test on the
MIT-Adobe-5K dataset. As shown, the statistical users’ pref-
erence is not biased towards a specific expert, even expert E
showed slightly higher preference. This implies that winner-
takes-all strategy is not suitable to reflect the actual prefer-
ence distribution (The detailed protocol will be presented in
Section IV). Beauty is in the eye of the beholder, so enhanced
images should satisfy a wide range of viewer preferences.
Ideally, the enhancement algorithm should be able to produce
variously enhanced images so that users can choose their
preferred styles. Furthermore, to better accommodate users’
satisfaction, the system should let users adjust the degree of
enhancement once they find the best style.

Motivated by these observations, we propose a novel
framework termed –Diverse and adjustable Versatile Image
Enhancer (DaVIE)– that presents diversely enhanced candi-
date images while the users’ control the level of enhancement.

To the best of our knowledge, this is the first work that offers
diverse and manually adjustable image enhancement guided
by multiple ER images. Fig. 1 shows six diverse results
from DaVIE at three adjusted enhancement levels. In the
figure, The DaVIE results show diverse styles compared
to the original image and even the ER images. Moreover,
the results at the Natural level demonstrate an similar level
of enhancement to the ER images. On the other hand, when
the level is Original, the results are similar to the original
image with a slight enhancement effect. In contrast, when
the enhancement level is Strong (extrapolation), the editing
style is noticeably emphasized but still visually pleasing. The
extrapolation outside the convex hull is challenging due to a
lack of appropriate supervision signals.

To achieve this, we train a variational auto-encoder (VAE)
based diverse image-to-image translation network.Moreover,
to adjust the level of enhancement, we propose a generalized
version of adaptive instance normalization (AdaIN) that pro-
vides control over the enhancement level. Hence, the users
can freely choose their preferred image while adjusting the
degree of enhancement according to their preference and
can also produce excessive enhancement. Inspired by [15],
we impose a constraint on the latent space to force the
network to learn a locally linear manifold that can offer
adjustable enhancement levels beyond what the network sees
in training. By an extensive benchmark of various image
enhancers, we demonstrate that DaVIE can provide multiple
preferable candidates offering state-of-the-art performance.
Moreover, from the user study, we demonstrate that the pro-
posed scheme can be used practically.

The main contributions of our study are:
• A novel framework that learns a diverse image-
to-image-translation model for user-oriented image
enhancement that allows users choose image of their
preference.
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• A new adjustable enhancement scheme, which can be
achieved by adjusting the translation of the original
image toward the ER images in the latent space. To real-
ize this, we propose a generalized version of AdaIN,
called AdaINa and its necessary regularization terms.
This scheme results in high-quality output, even for
extreme-enhancement level.

The remainder of this paper is organized as follows.
Section II discusses recent studies that used image enhance-
ment techniques and diverse image generation models.
Section III describes the architecture of the DaVIE frame-
work and, the implementation of VAE based diverse and
adjustable learning. Section IV discusses the experimental
results of DaVIE and presents model for visualization and
analysis. Finally, Section V concludes the paper.

II. RELATED WORK
A. DIGITAL IMAGE ENHANCEMENT
Image enhancement has been widely studied in the field
of signal processing and computer vision. Several previ-
ous studies focused on low-level processing such as con-
trast adjustment [16], detail sharpening [17], and image
denoising [18]. Recently, as data-driven approaches have
become popular, high-level approaches are being studied
extensively. Bychkovsky et al. [1] created a large-scale
image-retouching database, which includes pairs of the orig-
inal and the corresponding five ER images and trained
machine learning models to predict the adjustment param-
eters. Hwang et al. [19] proposed context-aware image
enhancement for automated processing. More recently, with
the development in deep-learning, Yan et al. [20] pro-
posed an automatic image adjustment method using a sim-
ple deep neural network. Ignatov et al. [21] proposed a
CNN-based quality enhancement model. Hu et al. [22] devel-
oped a global retouching curve prediction model using a
white-box framework. Gharbi et al. [23] attempted to learn a
locally-affine model in bilateral space for real-time enhance-
ment. Chen et al. [11] recently proposed the deep photo
enhancer (DPE) technique that introduces unpaired gener-
ative adversarial networks (GANs) for automatic enhance-
ment. Another stream is engaging in the enhancement of
underexposed images. Chen et al. [24] made use of short-
and long-exposure mapping, while Wang et al. [14] esti-
mated a scaling illumination map. Park et al. presented
dual autoencoder based low-light image enhancement [25],
while Guo et al. also proposed a pipeline neural network
for this task [26]. Kim et al. introduced patch-based princi-
pal energy analysis [27], and they also proposed maximal
diffusion values based low-light image enhancement [28].
Ni et al. [29] presented unsupervised image enhancement
method using GAN.

By using a reinforcement learning, Park et al. [30] pro-
posed a global image modification model. To account for
local adjustments, Moran et al. [13] trained several local
parametric functions. Similarly, Kim et al. [12] proposed a
two-stage approach that includes a channel-wise intensity

transformation and local refinement network. Zeng et al. [31]
proposed a learning framework for rapid image enhancement
based on image-adaptive three-dimensional lookup tables
(3D LUTs). However, most of the studies in this stream only
considered one image pair (i.e., a single pair of original-GT,
with expert C in the MIT-Adobe-5K). This, of course, limits
individual preference in applications.

In connection with personal-preference, several latent
searching algorithms have been proposed to determine
user-oriented target [32], [33]. For image enhancement,
Kang et al. [34] proposed an enhancement module
that observes user preferences and conducts personalized
enhancement of unseen images. Similarly, Caicedo et al. [35]
introduced a collaborative filtering method to discover clus-
ters of user preferences for automatic enhancement. Recently,
Bianco et al. [36] proposed personalized image enhancement
using neural spline color transforms. Also, Kim et al. [37]
introduced the concept of personalized image enhancement.
They gathered users’ preferred image sets and trained the
enhancement module by embedding the estimated prefer-
ence. However, it is still difficult to characterize the users’
preferences precisely, which can vary depending on the users’
momentary emotion or situation.

B. DIVERSE IMAGE GENERATION
Diverse image generative models are mainly classified into
one of two categories: noise-to-image generation and image-
to-image translation. The most popular approaches to noise-
to-image generation are well-known VAE [38], [39] and
GAN [40]. Especially, VAE learns high-dimensional dis-
tributions as a variational inference problem. Moreover,
the learned latent distribution can be directly used to gen-
erate diverse and creative results while providing more sta-
ble training than GAN. For the image-to-image translation,
in [41], they developed a conditional adversarial network
as a general-purpose solution to image-to-image translation.
However, since the generator relies on the target domain,
the style of the generated image is still limited. More recently,
AdaIN has been widely used in the encoder-decoder net-
work [42]. In [43], [44], the content and style codes of the tar-
get were utilized and translated into those of another domain
for diverse image-to-image translation. In [45], they applied
a deep network interpolation for various image translation
tasks.

Our approach takes advantage of both ways. While our
model learns to translate the original image to an enhanced
image, we realize diverse styles of enhancement by explicitly
deploying a learned distribution of various styles using a
variational approach. Moreover, we propose an adjustable
learning scheme that provides a method to control the level
of enhancement as shown in the examples of Fig. 1.

III. PROPOSED APPROACH
Fig. 2 presents an overview of the proposed framework for
diverse and adjustable image enhancement. Suppose we have
a set of training images: a low-quality original image Io and
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FIGURE 2. The network architecture of DaVIE. The structure mainly includes the encoder E and generator G modules while the blending module is
responsible for modulating the instance guidance space to the enhanced image space.

its multiple ER image sets Ier = {I1er , I
2
er , . . . , I

N
er } as instance

guidance, where N is the total number of experts. From the
given training set, the enhanced images Ie are produced while
the entire pipeline is trained in an end-to-end manner.

Firstly, from the instance guidance set Ier , the guid-
ance image Ier is randomly selected and projected into a
low-dimensional manifold F by the encoder. From the man-
ifold, the generator obtains a blended feature and learns to
transfer the instance space into the enhanced space.

To control the level of enhancement, we introduce two
possible approaches: simple linear extrapolation and lin-
ear weighting into AdaIN when the model transfers the
low-dimensional latent into the generator. Figs. 3(a) and (b)
show the results of each approach with respect to the linear
weight parameter λ. As shown in the figure, a simple extrap-
olating process is not sufficient to guarantee a satisfactory
result. Therefore, we newly propose a generalized version of
AdaIN called AdaINa that enables adjustable enhancement.
AdaINa performs linearly approximated embedding over the
manifold by using a control parameter λ.

Generally, the variational network suffers from a posterior
collapse in the diverse generative scenario, which results in
weak diversity of enhancement. To address this, our network
also uses a pulling away (PA) loss that maximizes the distance
of diversely enhanced images. Moreover, to assure the local
quality of excessive enhancement (for λ > 1), we also utilize
a modified version of structural similarity (SSIM) as a quality
assurance (QA) loss.

A. DIVERSE AND ADJUSTABLE FRAMEWORK
1) PROBABILISTIC FRAMEWORK FOR DIVERSE
ENHANCEMENT
To obtain a distribution of diverse enhancement samples,
we take an amortized variational inference (AVI) approach
that learns a global inference network to predict the

parameters of the per-sample latent distribution, which is
similar to the encoder of a VAE. AVI involves the minimiza-
tion of the Kullback-Leibler divergence (KLD) between the
variational distribution and the ground-truth (GT) posterior
distribution. As optimizing directly is not feasible in practice,
we follow the approach in [38], [46] and minimize a varia-
tional lower bound instead, as follows:

log p(Ie|Io) ≥ −KL(fφ(Zc|Ier )||fψ (Zc))
+EZc∼fφ (Zc|Ier )[log, gθ (Ie|Zc, Io)] (1)

where Ie, Ier and Io are the enhanced, ER, and original
images, respectively. Zc is the latent style vector of instance
guidance space. Further details on the derivation of the lower
bound can be found in [38], [46]. fφ , fψ , and gθ are the
posterior, prior, and likelihood parametrized by deep neural
network parameters φ, ψ , θ , respectively. Here, the prior
is set as fψ = N (0, I). The first term (KL(·)) is used to
ensure new enhancement styles to be drawn from a unit Gaus-
sian, while the second term (EZc (·)) denotes an auto-encoder
reconstruction loss.

2) ADJUSTABLE ENHANCEMENT FRAMEWORK
An adjustable model can be learned the most intuitive by
controlling the latent vector before passing it into the gen-
erator. For this, we use the concept of AdaIN [42] and further
develop the module to incorporate adjustable property. The
mathematical expression of AdaIN can be summarized as:

AdaIN(u, v) = σ (v)
u− µ(u)
σ (u)

+ µ(v), (2)

where µ(·) and σ (·) are the spatial first- and second-order
statistics of the given two feature maps u and v. In our
framework, u and v are the feature maps from the original
and enhanced images, respectively. If we assume a locally
linear manifold, we can easily draw new samples with given
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FIGURE 3. Comparisons of four different extrapolating schemes according to the control parameter λ: (a) simple linear extrapolation using the original
image (λ=0) and the expert-C retouched image (λ=1) in the image space, (b) original AdaIN based DaVIE, (c) proposed AdaINa based DaVIE, and
(d) DaVIE w/ Lλ=1

rec and Lλ=1
latent , which is equivalent to a simple L1 loss. Note that the subfigures (a)-(d) are described throughout Section III.

µ(u),µ(v), σ (u), and σ (v). Here, when themodulation param-
eters µ(v) and σ (v) are linearly weighted, the result can be
adjusted along the true manifold. However, without explicit
regularization, the manifold may be highly non-linear. In this
case, the linear sampling scheme offers a poor approximation
and may lead to undesirable enhancements. For example,
Fig. 3(b) shows an example when a linear weight is applied
to the original AdaIN which leads to an unpredictable change
when the control (weight) parameter increases.

To address this problem, we propose a generalized version
of AdaIN termed AdaINa, which imposes a locally linear
constraint for the neighborhood of the original image Io and
the enhanced image Ier .

We assume that if the similar levels of enhancement are
close to each other in the image space, there also exists
a latent space such that the latent representations of these

FIGURE 4. A schematic example of the true manifolds induced by AdaIN
and AdaINa. (a) shows the manifold space learned by the original AdaIN
and (b) shows the linearly approximated manifold space learned by
proposed AdaINa. In (b), the linearly generated latent codes are
distributed nearer to the true manifold (green samples).

images are also close to each other. From this assump-
tion, we constrain the manifold by a locally linear rule
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FIGURE 5. Examples of 14 diversely enhanced images (the control parameter λ is set to 3), five expert-retouched images (experts A to E), and the original
image. Note that DaVIE results are enhanced from the random seeds.

dictated by a control parameter λ. Hence, we can approxi-
mate the locality of the true manifold by a linearly approxi-
mated manifold in the latent space F . AdaINa is defined as
follows:

AdaINa(u, v) =
σ (u)+ λ · Eσ (u, v)

σ (u)
(u− µ(u))

+µ(u)+ λ · Eµ(u, v), (3)

where µ(·), σ (·), and λ are the spatial first- and second-
order statistics of the input feature maps u and v, and the
control parameter (λ > 0). Eµ(·) and Eσ (·) denote the statis-
tical direction of u and v, that is, Eµ(u, v) = µ(v) − µ(u)
and Eσ (u, v) = σ (v) − σ (u), respectively. Using this linear
interpolation scheme, we implicitly force the network to pro-
duce plausible samples for the regions near the data point.
As a result, the manifold learned by the network becomes
smoother. Fig. 4 shows a difference between (a) AdaIN and
(b) AdaINa over the interpolated samples between Original,
Natural, and Strong (extrapolated) in the true manifold. As
illustrated, AdaIN constrains the function at only the data
point, and the distribution of manifold space shows high
curvature. Thus, when we linearly sample from that man-
ifold in (a), the distance between the sampled results and
true manifold is large, which may not produce satisfactory
outcomes. In contrast, whenwe employAdaINa, themanifold
is smoothened and becomes more suitable for our linear
sampling strategy.

For clearer visualization, Figs. 3 (b) and (c) show the
comparison of DaVIE trained with the original AdaIN and
AdaINa. As can be seen, the adjusted images in Fig. 3(b) show
high distortion as λ varies. However, as shown in Fig. 3(c),
this embedding is intuitive for adjusting the level of enhance-
ment, even for extrapolation (λ > 1). Nonetheless, triv-
ially applying AdaINa does not immediately translate to
high-quality adjusted results. To make this work properly,
we introduce several new losses, as will be discussed in
Section III-C.

B. ARCHITECTURE
Our framework includes two separate modules: the encoder
module E (fφ(Zc|Ier )) that projects the instance guidance
space into low-dimensional manifold; the generator mod-
ule G (gθ (Ie|Zc, Io)) which generates the diversely enhanced
image Ie from the given original image Io and the latent
vector Zc. The encoder module E includes six convolu-
tional layers with down-samplings and ends with two dense
layers that estimate the per-sample statistical mean and
variance of the proposal distribution fφ . Our generator G
is based on the U-Net structure [47] which has a set of
down- and up-sampling convolutional layers. Tomodulate the
re-sampled latent vector into the generator, we use a blend-
ing block which contains affine transformation and AdaINa.
In this block, the activation outputs (skips) of down-sampling
layers, the latent vector Zc, and the control parameter λ are
fed into AdaINa for diverse and adjustable enhancement. For
the encoder module and the down-sampling layers in the
generator, we use batch-normalization [48]. During inference
time, the latent vector is randomly sampled from a normal
distribution instead of the ER guidance images. Therefore,
DaVIE can provide multiple enhanced candidates from an
infinite number of trials. Fig. 5 shows 14 diversely enhanced
examples from a randomly generated latent vector. It can
be seen that DaVIE provides diverse and visually pleasing
results beyond the ER images.

Following the current trend, to produce better-looking out-
put, we optionally employ an adversarial loss [11]. For the
discriminator network D, we adopt a multi-scale discrimina-
tor [49] to differentiate real and fake.

C. ADJUSTABLE LOSS TERMS
Unlike previous works, the proposed model is based on
AdaINa, which imposes a locally linear constraint on the
manifold to adjust the level of enhancement. However, when
using a usual L1-norm as reconstruction loss, the adjustable
effect is easily washed away during training. Fig. 3 (d) shows
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FIGURE 6. Effectiveness of the quality assurance loss for extrapolated
results (λ is set to 2): (a) the result without LQA and (b) the result with
LQA. The artifacts on the edge lines are clearly removed in (b) (w/ -
with, w/o - without).

an example when DaVIE is trained using simple L1 loss.
As can be seen that the adjusted images with the control
parameters λ ∈ {1, 2, 3} still show similar effects. In other
words, since we have only a single signal to supervise all
the levels of outputs, if we use a simple L1 loss, the network
ignores λ. Therefore, to avoid the washing-away problem,
we take into account the control parameter λ in the objective
function explicitly. Intuitively, when the control parameter
λ is closer to zero, the reconstruction loss equals the error
between the enhanced image Ie and the original image Io.
In contrast, when λ is near to one, the loss function becomes
closer to the error between the enhanced image Ie and the
ER image Ier . Toward this, we define two locally linear
embedded reconstruction losses: the content reconstruction
loss and the latent reconstruction loss.

1) CONTENT RECONSTRUCTION LOSS
The content reconstruction loss Lrec is defined as an inter-
polated L1-norm between the original image Io and the ER
image Ier as

Lrec = max(0, (1− λ)) · ||Io − G(Zc, Io; λ)||1
+ λ · ||Ier − G(Zc, Io; λ)||1, (4)

where G(·) is the generator module which outputs the
enhanced image Ie and λ is the control parameter (λ > 0).
Here, when (1 − λ) is negative, we manually set it to zero
using max(0, (1− λ)).

2) LATENT RECONSTRUCTION LOSS
Likewise, in the low-dimensional manifold, the latent recon-
struction loss Llatent is also defined by an interpolated
L1-norm between the original image latent E(Io), the ER
image latent E(Ier ) as

Llatent = max(0, (1− λ)) · ||E(Io)− E(Ie)||1
+ λ · ||E(Ier )− E(Ie)||1, (5)

where E(·) and λ are, respectively, the encoder module that
extracts the latent vector of each image and the control
parameter.

3) QUALITY ASSURANCE LOSS
Since the proposed framework performs extrapolation
(λ > 1), the strongly enhanced image unavoidably suffers

from unexpected artifacts due to the non-linearity of the
manifold. Fig. 6 (a) shows an example of visual artifacts
when the control parameter is set to λ = 2. As can be seen,
a structural degradation is distributed along the edge region.
To address this problem, we maximize the structural consis-
tency using SSIM [50], but we take only the structural term
among the luminance, contrast, and structural similarities.
This is because the other terms may also adversely affect our
adjustable learning, which is the reason for using (4) and (5)
instead of simple L1 loss. The QA loss is defined as follows:

LQA = SSIMs(Ie, Ier ), (6)

where SSIMs is the structural term of SSIM. As demon-
strated in Fig. 6 (b), when our model is trained with LQA,
the artifacts are largely mitigated even the control parameter
is extremely large.

D. DIVERSITY TERMS
1) KL DIVERGENCE LOSS
To achieve diverse enhancement, we minimize the typical
interpretation of the KLD loss LKL between the encoded
latent space E(Zc|Ier ) and multivariate normal distribution
space N (0, I). The KLD loss is defined as

LKL = KL(E(Zc|Ier )||N (0, I))). (7)

2) PULLING AWAY LOSS
As mentioned above, VAE easily suffers the posterior-
collapse problem. To solve this, we additionallymaximize the
diversity of the enhanced images G(Z1

c , Io) and G(Z
2
c , Io) for

certain latent codes Z1
c and Z2

c . The pulling away constraint
is defined as in [51]:

LPA =
||G(Z1

c , Io)− G(Z
2
c , Io)||1

||Z1
c − Z2

c ||1 + C
, (8)

where Z1
c and Z2

c are two randomly sampled latent vectors,
G(Z1

c , Io) and G(Z
2
c , Io) are their enhanced images from the

generator G, and C is a constant for numerical stability.

3) ADVERSARIAL LOSS
In our framework, the diversity relies only on the ER images.
Nevertheless, we confirmed that the spatial characteristic of
the enhanced image slightly follows the adversarial true set
similar to DPE [11]. The discriminator loss Ladv is based
on LSGAN [52]. As mentioned before, this term can be
optionally used. The detailed experimental results will be
introduced in Section IV.

E. TOTAL LOSS
Finally, the total loss function utilized for the training process
is given by:

Ltotal = γrecLrec + γlatentLlatent − γQALQA
× γKLLKL − γPALPA + γadvLadv, (9)

where γrec, γlatent , γQA, γKL, γPA, and γadv are the
hyper-parameters to weight each term.
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TABLE 2. Quantitative comparison with the state-of-the-art approaches on the MIT-Adobe-5K-ER-C (test set is same as in UPE [14]). ↑ indicates higher is
better while ↓ implies smaller is better.

IV. EXPERIMENTAL RESULTS
A. IMPLEMENTATION DETAILS
Because the proposed DaVIE is guided by multiple ER
image pairs, the experiments are mainly conducted on the
MIT-Adobe-5K dataset [1]. Unlike existing studies, we fully
utilize five ER image sets in the dataset as instance guidance
and GT. We randomly divided the dataset into two sepa-
rate training sets (2,250 images for training, 2,250 images
for discriminator) and one test set (500 images), as same
for their multiple ER images. The images are scaled to
256×256 resolution in the training session. In the experiment,
the dimension of the latent vector was set as 256. We set the
hyper-parameters as γrec = 100, γlatent = 1, γQA = 10,
γKL = 1, γPA = 1, and γadv = 1, respectively. The
range of the control parameter λ was set to λ ∈ [0, 2] in the
training. For optimization, we used the Adam optimizer [53]
with (β1 = 0.0, β2 = 0.99) for the encoder, generator, and
discriminator modules. We set the learning rate as 0.001 and
decreased it by 0.95 for each of the 20 epoches. The batch size
was set to 10, and the training was powered by three GPUs
(RTX 2080 Ti 11GB).

B. QUANTITATIVE COMPARISON
We first compared the quantitative quality of DaVIE with
existing image methods on the dataset. Since this is an
initiative that diversely enhances images, it is required to
select a specific sample that is the most similar to prefer-
ence from the diverse results. Most of the previous studies
trained only on a specific ER set (mostly expert C) and
obtained only one solution. For fairness, we also bench-
marked on widely compared ER-C. However, the proposed
DaVIE outputs multiple enhanced candidates. Therefore,
even if the quality of the diversely enhanced image is pleas-
ing, it is likely to be different from the target ER image.
To address this, we first enhanced each test image to a
set of 30 images from the random seeds of three control
parameters (λ ∈ {1.0, 2.0, 3.0}). From the enhanced image
set, an image that is most quantitatively similar to the ER-C
image selected for the comparison. Here, we used the mean
squared error (MSE) for their similarity check (i.e., similarity
between 30 diverse images and ER-C). In the experiment, a
training/testing split follows UPE [14], and nine recent state-
of-the-art image enhancement methods were benchmarked:
U-Net based model [47], HDRNet [23], White-Box [22],
DPE [11], Distort-and-Recover [30], UPE [14], DLPF [13],
Kim et al. [12], and Zeng et al. [31].

TABLE 3. PSNR and SSIM comparison over five ER sets, and the ER-C
results without LQA loss on MIT-Adobe-5K. w/ and w/o indicate with
and without, respectively.

We employed three well-utilized metrics for quantitative
comparison, namely: SSIM [50], LPIPS [54], and PSNR,
between the enhanced images and GTs. Table 2 tabulates
the performance comparison over the tested models on
MIT-Adobe-5K-ER-C. As shown in the table, DaVIE delivers
higher quantitative scores than most of the benchmarked
models except a recent work by Kim et al. [12]. Nonetheless,
the proposed model provides more diverse enhancement.
For clearer demonstration, Table 3 lists the individual per-
formance comparison over the five ER sets as GTs in the
MIT-Adobe-5K dataset. As may be seen, proposed DaVIE
delivers reliable scores on themost ER sets, even though these
are tested by a single trained model.

C. VISUALIZATION RESULTS
Fig. 7 reports examples of our diverse and adjustable
enhancement with their multiple ER images. Fig. 8 presents
the enhanced results of DaVIE in comparison to those of the
existing image enhancers (DPE, UPE, DLPF) over five ER
images. Note that all of benchmarked models are reproduced
by pretrained models. As shown in Fig. 7, when the control
parameter λ is equal to zero, the results are closer to the orig-
inal image. Conversely, as λ increases, the level of enhance-
ment proportionally increases towards the GTs, and it is still
visually pleasing (as in Fig. 1). Specifically, the results from
DaVIE A to E are highly similar to five ERs (experts A to E)
while DaVIE F provides more diverse and pleasing results
that go beyond the diversity of ER images (experts A-E).
Furthermore, when DaVIE is compared to existing methods,
it suggests more diverse candidates while the benchmarking
methods are mostly close to expert C in Fig. 8.
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FIGURE 7. Examples of six diversely enhanced images (DaVIE 1 to 6) with four control parameters (λ ∈ {0,1.0,2.0,3.0}), five expert-retouched images
(experts A to E), and the original image. Note that DaVIE 1-6 results are enhanced from the random seeds.

D. QUANTITATIVE DIVERSITY
We also show the quantitative diversity via the LPIPS met-
ric score [54]. As in [43], [56], an average LPIPS score
is a well-utilized indicator of diversity quantification. Here,
we use the entire test set, and twenty-diversely enhanced
image pairs per input were utilized, which amounts to 10K
pairs. Table 4 reports the average LPIPS scores w.r.t. λ.
As may be seen, DaVIE gradually increases the diversity
scores when λ increases. This tendency also can be clearly
shown in Figs. 1 and 7. Moreover, to validate the diver-
sity when using LPA, we report the ablation results of

TABLE 4. Quantitative diversity comparison with different control
parameters and without LPA loss on MIT-Adobe-5K-ER-C. The diversity
score is the average LPIPS metric.

LPA. When DaVIE trained without LPA, the LPIPS score
decreases by nearly half.
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FIGURE 8. Comparisons of four diversely enhanced DaVIE results (DaVIE 1-4) with three existing methods (DPE [11], UPE [14], and DLPF [13]) and five ER
images.

FIGURE 9. Screen-shot of the user interface for the preference user study.

E. ABLATION STUDY
We further investigate the effectiveness of our contributions
one by one. Here, we quantitatively compare three versions:
DaVIE without QA loss LQA, DaVIE with AdaIN, and
DaVIE with L1 loss. At the bottom of Table 3, we report
the results of three versions tested on the MIT-Adobe-5K-
ER-C. As mentioned in Section III-C, it can also be seen
that removing LQA decreases the performance compared to
DaVIE-ER-C. Also, when we trained the model with original
AdaIN, the performance was the poorest as predicted in
Section III-A. In addition, when DaVIE is trained with the
usual L1 loss, the performance is relatively lower than that of

DaVIE using the proposed interpolation-based reconstruction
losses. Overall, when all the loss terms are used together,
DaVIE exhibits the best performance.

F. USER STUDY
1) PROTOCOL
In our user study, 21 subjects participated satisfying the
subject criteria recommended in ITU-R BT. 500 [57], [58].
Their ages ranged from 21 to 38 years, and they had normal
vision (all of the subjects were screened for normal visual
acuity on the Landolt chart). A 65-inch monitor with UHD
resolution (Samsung UN65JU7500F) was used to display
images. In our subjective examination, the following two
sessions were conducted: (1) ranking five ER images in the
MIT-Adobe-5K dataset and (2) selecting the most preferred
image from the 10 randomly shuffled images that contain five
ER images and five enhanced images by DaVIE. Before each
session, we informed each subject individually to help them
understand the goal and procedure of the tests.

2) SUBJECTIVE RANK TEST
To clarify the users’ preferences, we first conducted the
subjective rank test. For this test, we randomly selected
100 images from MIT-Adobe-5K. Each testing set included
the original image and five ER images. Each subject viewed
them at the same time, and was asked to rank the five ER
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FIGURE 10. In-the-wild test examples on the Flickr30K [55] dataset. Each example set includes four DaVIE enhanced results (DaVIE 1-4) with three control
parameters (λ ∈ {0,1.0,3.0}) and the original image (Original 1-4).

images in order of preference. From the first to the last
ranks, we scored each from 5 to 1, then averaged the scores
for each ER set as shown in Table 1. As can be seen in
the table, all ER images seem to have similar preference
scores. This implies that it is necessary to take into account
various styles of enhancement to reflect the real-world user
preference rather than depending on only one style (as done
in most studies) [11], [13].

3) PREFERENCE USER STUDY
We designed a ‘Turing-test’ based user-study so that half
of the images were ER images and the other half were
the DaVIE enhanced images (five human-enhanced vs. five
machine-enhanced images). It means that an ideal selection
probability of 50% indicates that the users are totally con-
fused between expert- and machine-retouched images [59].

Similar to the rank test, we also randomly selected
100 image sets from the MIT-Adobe-5K dataset. We first
generated five diverse images from the random seeds with a
fixed control parameter of λ = 3. Then, 11 images (the orig-
inal image, five DaVIE results, and five corresponding ER
images) were shown to each subject using our user-interface
as shown in Fig. 9. To ensure a fair comparison, it was
not specified whether the images were DaVIE enhanced or
ER. Then, each user selected the top-five preferred images
for each testing set. After subjects assessed 100 image sets,
the overall selected ratios between DaVIE results and ER
images were obtained.

FIGURE 11. Samples enhanced from interpolated latent representations
of four independent latent vector. The control parameter λ was set to 3.

In the experiment, the subjects selected DaVIE enhanced
imageswith a probability of 34.53%. The result shows that for
more than one-third of the time users may mistake our DaVIE
results with real ER images, or in other words, more than
one-third of our DaVIE results were of the highest standard.
Even though 34.5% is not reaching the ideal 50% yet, DaVIE
is significantly competitive in comparison with five human
experts’ results. The selected percentage of individual experts
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TABLE 5. Additional results of a subjective user study∗.

FIGURE 12. Effects of two different adversarial true-sets: (a) AVA-HQ
based DaVIE, (b) MIT-Adobe-5K based DaVIE.

is shown in Table 5, where each ER image set was selected
with about 13% individual preference. This again suggests
that the user’s preferences are also not biased toward one
expert style, and it can be seen that DaVIE can replace
them with a 34.53% probability. Thus, the proposed DaVIE
is highly competitive in terms of subjective quality or the
preference.

G. IN-THE-WILD TEST
We also visualized the results of in-the-wild images on the
Flickr30K dataset [55]. Fig. 10 depicts four examples of
sets using DaVIE from the Flickr30K dataset. Each image is
enhanced diversely from four random seedswith three control
parameters λ ∈ {0, 1, 3}. It can be seen that the results are
diversely enhanced and visually pleasing. Moreover, as the
enhancement level increases, each style is emphasized.

H. LATENT INTERPOLATION
The latent representation from the feature extraction pro-
cess was analyzed. The proposed model generates enhanced
images from the random seed. To further analyze this, we con-
ducted a latent-interpolation experiment using bi-linear inter-
polation. We first randomly chose four latent representations
with the control parameter λ of 3. Then, we synthesized a con-
vex collection of 49 latent codes using bilinear interpolation.
Finally, we enhanced the input image from the interpolated
latent codes and the results are reported in a 7 × 7 grid as
shown in Fig. 11. As can be seen, DaVIE smoothly interpo-
lates between four enhancement styles, which implies that the
learned manifold is also locally smooth.

I. DIFFERENT ADVERSARIAL TRUE-SET
As previously mentioned, the adversarial loss can be option-
ally used in our framework. Since our model is based on
paired-learning, the adversarial true-set does not significantly
affect the enhanced results; however, we observed that the
spatial characteristic was slightly changed w.r.t. the adver-
sarial true-set. Fig. 12 shows the examples of two different
adversarial true-sets for DaVIE: AVA-HQ [60] and MIT-
Adobe-5K dataset [1]. For the AVA-HQ dataset, we selected
1000 high-aesthetic quality images with higher mean opinion
scores (MOSs) (MOS > 0.8) in the AVA dataset [60]. As can
be seen, the overall images in AVA-HQ are dark, and DaVIE
results with the AVA-HQ adversarial true set show also very
dark but visually pleasing. In contrast, when we used the
MIT-Adobe-5K dataset as an adversarial true-set, the results
are much brighter and visually pleasing.

V. CONCLUSION
Unlike existing winner-take-all approaches, in this study,
we explored a diverse and adjustable image enhancer by uti-
lizing the AVI approach and locally linear embedding based
AdaINa. Through a diverse and adjustable scheme, the pro-
posed DaVIE provides diversely enhanced multiple-images
so that users can choose their own preferred images. The
diversely enhanced images are favorable among all the bench-
marking models and sometimes even makes viewer confuse
with professionally retouched images. In particular, the pro-
posed AdaINa can be effectively applied to other image-
to-image translation tasks for controlling the level of transfer.
In the future, we plan to customize the proposed framework to
an individual-preference-considered enhancement according
to user satisfaction with personal devices.
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