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Abstract—Single image 3D reconstruction has long been a
challenging problem. Recent deep learning approaches have been
introduced to this 3D area, but the ability to generate point clouds
still remains limited due to either the inefficient and expensive
3D representations, the dependency between the output and
number of model parameters or the lack of a suitable computing
operation. In this paper, we present a novel deep-learning-based
method to reconstruct a point cloud of an object from a single still
image. The proposed method can be decomposed into two steps:
feature fusion and deformation. The first step extracts both global
and point-specific shape features from a 2D object image, then
injects them into a randomly generated point cloud. In the second
step, which is deformation, we introduce a new layer termed
as GraphX that considers the inter-relationship between points
like common graph convolutions but operates on unordered sets.
The framework can be applicable to realistic image data with
background as we optionally learn a mask branch to segment
objects from input images. To complement the quality of point
clouds, we further propose an objective function to control the
point uniformity. Additionally, we introduce different variants
of GraphX that cover from best performance to best memory
budget. Moreover, the proposed model can generate an arbitrary-
sized point cloud, which is the first deep method to do so.
Extensive experiments demonstrate that we outperform existing
models and set a new height for different performance metrics
in single image 3D reconstruction.

Index Terms—3D reconstruction, point cloud, deep learning,
convolutional neural network.

I. INTRODUCTION

The world is 3D, and so is human perception. Making
machines see the world like human is the ultimate goal of
computer vision. Humans are superior at understanding the
underlying 3D space just by looking at a 2D image thanks
to their ability to learn from experiences, and machines are
still nowhere near humans’ perception level. Thus, a crucial
yet demanding question is whether we can help machines to
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achieve a similar 3D understanding and reasoning abilities. So
far, we have made significant advancements in 2D machine
vision tasks, and yet 3D reasoning from 2D still remains very
challenging due to the loss of depth information. Even though
2D images do not contain absolute depth information, they still
convey much relative one through various cues that machines
can learn.

Early on, given multiple 2D images having different view-
points, computers are able to estimate the shape of the in-
terested object [1,2], but they suffer various visual problems
related to holes and geometry, and some approaches may
only be applied in a studio environment. Different from the
aforementioned works, in this paper, we tackle the problem of
single image 3D reconstruction. Although 2D visual signals
discard occluded information of the 3D world, the shape
of an object can be conveyed through different 2D factors,
which constitutes a family of methods called “Shape from X”.
This family recovers 3D structures by assuming (or knowing)
some knowledge about lighting condition and object surface,
and hence, these methods usually work best in a controlled
environment.

The availability of voluminous data sparks a new generation
of learning systems that utilize deep convolutional neural net-
works (CNNs). However, there is not yet an easy and efficient
way to apply them to 3D reconstruction. Most modern progress
of deep learning is in areas where signals are ordered and
regular; for e.g., images, audios and languages [3]–[15], while
common 3D representations such as meshes or point clouds
are unordered and irregular. Therefore, there is no guarantee
that all the bells and whistles from the 2D practice would
work in the 3D counterpart. Some 3D structures may enable
easier learning such as grid voxels but not only such structures
are expensive but also quantization errors may diminish the
natural invariance of the data [16]. Besides, some early works
that applied deep learning into single image 3D reconstruction
[17]–[20] synthesize an output point cloud directly, so the
output size is constrained by the hardware memory. They also
mostly consider synthetic data, so in order to apply to realistic
scenes, they require segmentation masks of object, which are
usually not available in practice.

A. Proposed Framework

To address all the aforementioned problems, we present a
novel deep method that reconstructs a 3D representation of
an object from a single 2D image. In this work, we consider
point cloud as our output representation as it is simple and
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Fig. 1: A schematic diagram of our proposed method. Given
a 2D image and a randomly initialized point cloud, an image
encoder and point cloud encoder extract features and blend
together to transfer the shape information to the point cloud.
Then, the blended feature is fed to a deformation module to
produce the final point cloud prediction.

sufficiently efficient when it comes to transformation and
deformation, and can replicate fine details of an object surface.
Meanwhile, volumetric representations are expensive to store
in memory, and it is difficult to directly output meshes with
diverse topologies.

Considering existing works, we identify several desired key
properties of the prospective system as follows: (1) the model
should make predictions based on not only local features but
also high-level semantics, (2) the model should consider the
spatial correlation between points, (3) the method should have
a trade-off between performance and resources, (4) the output
point clouds should be of high quality, (5) the method should
be scalable, i.e., the output point cloud can be of arbitrary
size, and last but not least (6) the framework should have a
built-in solution to deal with realistic scenes. To inherit all
these properties, we propose to approach the problem in two
steps: feature fusion and deformation. A schematic drawing
of our approach can be seen in Fig. 1. Conceptually, the
feature fusion step extracts features from the input image and a
randomly initialized point cloud, and then fuse the two features
together. The fused features are used in the deformation step
to output a point cloud prediction.

In feature fusion, we first extract features from the given
input image and a randomly initialized point cloud. Concretely,
we develop two types of blended features, which are a point-
specific feature and a global feature. The point-specific feature
is obtained by projecting the 3D initial point cloud on to the
2D image feature maps. As points can be projected inside or
outside of object’s silhouette, this feature helps the network
to distinguish the two possibilities so that the network can
move points to the surface correctly. To achieve a global
feature, inspired by a simple but powerful idea from image
style transfer literature, we propose to transfer the shape
information from the 2D feature maps to the point set by
renormalizing point cloud features using statistics from the 2D
feature maps. Since the global feature is a summarization of
features over the whole spatial locations, the network is more
aware of the overall shape. Additionally, we propose to learn a
segmentation mask to deal with images containing background
when ground truth segmentation masks are available, which is

often overlooked in existing methods. This helps the network
to be more shape-aware in the existence of background, and
thus the performance can be much improved.

When generating points in a point cloud, it is necessary to
take the inter-connection between them because any point can
contain much information about other points. Thus, in the de-
formation step, we introduce a new layer termed GraphX that
learns the non-local relationship among points like common
graph convolutions [21] but can operate on unordered point
sets. We build different variants of the deformation module
and study their trade-offs, ranging from best performance to
best memory usage.

As observed in previous works [17,22], generated point
clouds typically do not exhibit a grid-like uniform distribution.
To fix this problem, we propose a uniformity regularization
that penalizes points that are too close to each other. We define
the concept of local variance of distances and enforce every
neighborhood shares the same variance. Thus, the result point
clouds exhibit a more regular pattern as can be seen in Fig. 4.

Previous deep learning works output a point cloud pre-
diction given an input image, so the size can only be as
large as the hardware allows. By contrast, as our framework
deforms a probabilistic initial point cloud, it is capable of
producing a point cloud of arbitrary size by deforming multiple
random point clouds. Indeed, we demonstrate that a variant
of the deformation module allows arbitrary-sized point cloud
generation via multiple forward passes, which is the first deep
method to do so according to our knowledge.

We dub the proposed method Point Cloud Deformation
NETwork v2 (PCDNetv2) for brevity. This work is an ex-
tensive and thorough update of our previously published
work [23,24] with the following major contributions
• We refine feature extraction and adapt a better training

regime. As a result, training time is much improved and
memory consumption is lowered while maintaining the
performance level.

• We predict a segmentation mask for input image in order
to deal with realistic images having background com-
pared with existing works that mainly consider synthetic
data so far.

• We propose a uniformity regularization to enhance the
quality of reconstructed point clouds.

• We propose several variants of GraphX ranging from best
performance to best memory consumption to enable a
wider usage coverage for the proposed layer.

• We present in-depth experiments and analyses regarding
the proposed components in our framework.

II. RELATED WORK

A. Multi-view 3D reconstruction

Traditionally, much research has been devoted to multi-view
reconstruction following a matching step [25]. SfM [1] has
been the most well-known method in this category. Some
modern works rely on a photo-consistency principle [2,26]–
[30] or graphs [31,32]. Still, these algorithms are critical of
different problems such as dependency on matching accuracy,
computational complexity, lack of details, and so on.
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B. Single-view 3D reconstruction

A sibling to multi-view 3D reconstruction is single-view
reconstruction. Shape-from-X [33,34] is perhaps the most
popular approach to this problem. Shape-from-Shading, the
most famous algorithm in this family, relies on the changes
of the image brightness in the 2D domain to calculate the
orientations of the surface points corresponding to the image
pixels, which can be used to recover a depth map of the scene
via integration. Despite its simple principle, its requirements
including light sources and/or albedo maps may only be
satisfied in a studio environment. In contrast, our method does
not assume any condition regarding light sources or shading.

C. 3D reconstruction from depth

3D scenes can be recovered from depth maps, which can be
obtained via either specialized hardwares [35] or estimation
methods [25]. While the former incurs much infrastructure
cost, the latter suffers many difficulties, and hence the esti-
mates are quite noisy.

D. Learning-based 3D reconstruction

Rather than manually crafting priors, some early studies
consider learning them from data. Notably, Saxena et al. [36]
constructed a Markov random field to model the relationship
between image depth and various visual cues to recreate a
3D “feeling” of the scene. In a similar study, the authors
in [37] learned different semantic likelihoods to achieve the
same goal. These models are quite simple and cannot learn
sophisticated structures.

E. Deep learning-based 3D reconstruction

Deep learning-based methods can reconstruct an object from
a single image by learning the geometries of the object from
image(s). Below, we will categorize recent methods based on
their output representations.

1) Volumetric: Wu et al. [38] employed a conditional deep
belief network to model volumetric 3D shapes. Yan et al. [39]
introduced an encoder-decoder network regularized by a per-
spective loss to predict 3D volumetric shapes from 2D images.
In [40], the authors utilized a generative model to generate 3D
voxel objects arbitrarily. Tulsianni et al. [41] introduced ray-
tracing into the picture to predict multiple semantics from an
image including a 3D voxel model. Tulsiani et al. [42] learned
3D shapes in an unsupervised way by a ray consistency loss
with different views. Howbeit, voxel is known to be inefficient
and computationally unfriendly [17,43], which makes it harder
to scale beyond 323 or 643.

2) Mesh: Wang et al. [43] and Wen et al. [44] gradually
deformed an elliptical mesh given an input image by using
graph convolution. Mesh R-CNN [45] first generates a coarse
voxel representation of the object, then meshing it and apply a
similar processing pipeline as in [43] for refinement to obtain
the final mesh. While mesh representation requires overhead
construction in the former, the meshing operator introduced in
[45] is not differentiable, and hence the final mesh quality
still largely depends on the accuracy of the coarse voxel
representation.

3) Implicit shapes: Implicit shape models have received
much focus recently [46]–[49]. As the name implies, it takes
more non-trivial effort to convert it into explicit 3D models
but these implicit representations are very useful in rendering.

4) Point clouds: The earliest work by Fan et al. [17]
directly regresses an image to a point cloud using a so-
phisticated encoder-decoder structure. Sun et al. [18] took
an autoregressive approach for point cloud generation, with
optionally an image to condition on. There has been a number
of studies trying to reconstruct objects without 3D supervision
[19,20] by leveraging multi-view images. However, in these
methods, the number of trainable parameters is proportional
to the number of output points, which creates an upper bound
for the point cloud size. In contrast, we overcome this problem
by deforming a point cloud instead of synthesizing one, which
makes the system far more scalable.

F. Neural radiance field (NeRF)
Recently, there has been much noise created by neural

radiance field, which started by the work of Mildenhall et
al. [50] and followed by a considerable amount of research
[51]–[54]. From multiple images of a scene, NeRF learns an
implicit function that maps 3D locations to density and color,
and a 3D mesh can be recovered using marching cubes [55].
The major difference between our methods and these works
is generalization. While NeRF overfits an NN to a single
scene and is not able to work with others, our framework
can reconstruct unseen objects after training.

G. Deep learning on point clouds
There has been a surge of interest in applying deep NNs

to point clouds started by [16] and followed by [56]–[62].
These methods mainly target classification, segmentation and
detection problems.

H. Generative adversarial networks
Our framework remotely resembles generative adversarial

network (GAN) [63]–[66], especially StyleGAN [65], as it
also utilizes a style transfer module, AdaIN [14], inside its
architecture. Compared to StyleGAN, our work does not
integrate the encoded noise into the main branch, but fuses
the encoded image features into the noise (randomly initialized
point cloud) branch.

A few works taking a GAN approach for point cloud gen-
eration are [67]–[70]. In these works, input noise determines
the output object shapes but in our method, the overall output
shape is determined by the input image while the noise only
affects the individual point position in the output point cloud.

III. POINT CLOUD DEFORMATION NETWORK

Our overall framework is shown in Fig. 2. Given a single
image of an object, we first encode it into multi-scale feature
maps using a CNN. From these features, we further distill
global and point-specific shape information of the object. Then
the two features are concatenated and sequentially processed
by an MLP network. The output of this MLP is then fed
to a deformation network. In the following sections, we will
describe all the steps in detail.
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Fig. 2: Overview of PCDNetv2.

A. 2D Image Feature

In literature, 3D reconstruction from single view is widely
studied where 2D information such as silhouette and shading
plays an important role. In our method, 2D features act like
an indicator of outside-ness and inside-ness of the silhouette.
Moreover, sharp edges inside the object also signal that the
corresponding 3D points are not locally planar. Disentangle-
ment between the shading and texture can be resolved by the
learned 3D prior in the network.

To extract 2D features, we use a VGG-like architecture
[72] similar to [43] to encode the input image (Fig. 2 (a) top
branch). Concretely, we divide the CNN into six blocks. The
feature map dimension is doubled after each block, starting
from 16. From the second block, the feature maps are four
times decimated. The feature maps starting from the third
block are used for the feature fusion as described next. All
layers use 3× 3 convolution kernels.

B. Feature Fusion Module

1) Point-specific shape information: Following [43], we
extract a feature vector for each individual point by projecting
the points onto the feature maps as illustrated in Fig. 2(b) (top
branch). Given an initial point cloud, we compute the 2D pixel
coordinate of each point using camera intrinsics and resample
the feature vectors using bilinear interpolation. Let the initial
point cloud and the extracted 2D feature maps at scale i be

Y ⊆ R3 and Xi ∈ Rhi×wi×ci (ci channels, height hi, and
width wi), respectively. For simplicity, we drop the index i
in the following discussion. In mathematical expression, the
point-specific feature can be represented as

flocal(yj) =u00X⌊PX [yj ]⌋ + u10X⌊PX [yj ]⌋+(1,0)

+ u01X⌊PX [yj ]⌋+(0,1) + u11X⌊PX [yj ]⌋+(1,1)

, (1)

where yj ∈ Y is a point in the cloud, PX [·] is a projection
operator that takes a 3D point and returns the 2D projec-
tion coordinates on X , ⌊·⌋ discards the floating point part,
XPX [yj ] ∈ Rc is the feature vector of pixel PX [yj ], and u’s are
the corresponding bilinear coefficients. This scheme is simple
and lightweight, but it is an efficient and creative way to embed
features into the initial point cloud.

2) Global shape information: The point-specific features
see only a small patch of the object, so the network is not
aware of its overall shape. Therefore, in order for the network
to be fully aware of the object shape, we propose a global
shape feature that summarizes the object. The global shape
information is obtained by the bottom branch in Fig. 2(b)
left. We borrow a simple yet powerful concept from image
style transfer literature. We find an analogy between style
transfer and our problem as we want to transfer the object
shape described in a 2D image to an intial point cloud. To
this end, we propose to stylize the initial point cloud by a 2D-
to-3D adaptive instance normalization (AdaIN2D→3D) [14].
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First, we process the incoming point cloud features by a stack
of FC layers to project to the same spaces with the feature
maps. For a point yj in a point cloud Y , we define the 2D-to-
3D AdaIN2D→3D as

fglobal(yj) = AdaIN2D→3D(X, yj) = σX
y − µY
σY

+ µX , (2)

where yj ∈ Y is the feature vector of point j in the cloud,
µX and σX are the mean and standard deviation of X taken
over all the spatial locations, and µY and σY are the mean
and standard deviation of the point cloud in feature space.
The rationale of our definition is that from a global point of
view, an object shape can be described by a mean shape and
an associated variance. We can retrieve these mean shape and
variance from the feature maps of the 2D input image, and then
embed them into the normalized initial 3D point cloud. We
apply AdaIN2D→3D to the features in the coarse-to-fine order,
starting with dimension 64 and gradually to 512. Note that we
can reverse this order similar to [73], but it will require either
a reverse point cloud encoder in which dimension becomes
smaller as the network gets deeper or to add various 1 × 1
convolutional layers to reverse the feature dimensions. In our
experiment, we found that doing so leads to unstable training
and a lower performance. Therefore, we abandoned this design
and stuck to our original order.

3) Mask prediction: To deal with the case in which back-
ground exists, we optionally predict a segmentation mask
of the object in the input image in a supervised manner
when ground truth masks are available, which is similar to
Gkioxari et al. [45]. The mask prediction branch is shown
in the right side of Fig. 2 (b) right. As can be seen from
the figure, this branch consists of a U-Net [71] decoder that
translates the last output feature maps of the image encoder to
a segmentation mask. The decoder mostly mirrors the encoder
architecture, with the exception of the upsampling layers that
use bilinear interpolation. As in Ronneberger et al. [71], it
concatenates feature maps from the image encoder blocks with
the outputs of the corresponding decoder blocks. At the end
of the network, the segmentation mask is produced by a pixel-
wise sigmoid activation function.

After getting a predicted object mask, before extracting the
point-specific and global feature vectors, we multiply the mask
with the 2D feature maps to weight each pixel. For feature
maps smaller than the mask, we resize the mask using bilinear
downsampling. Multiplying the 2D feature maps with the
masks will largely preserve the features in the foreground and
discount those in the background. By providing the network
an explicit hint about which pixels correspond to the object in
the image, the network should be more aware about the object
shape, and hence performance can be improved.

4) Point cloud feature extraction: The global and point-
specific features are extracted from features in each of the
four blocks as depicted in Fig. 2. At scale i, to obtain a
single feature vector for each point, the two features are simply
concatenated in feature space as

ŷ
(i)
j = [f

(i)
local; f

(i)
global]. (3)

Fig. 3: A conceptual illustration of GraphX. First, the new
points nk are computed by combining all the given points fi
according to a mixing weight. Then the new points are mapped
from F to a new space Fo by W and activated by a non-linear
activation h(·). For brevity, biases are omitted.

Then this feature vector is fed to an FC layer to get y(i+1)
j ,

which is the input feature for the next scale. Compared to our
original work [24] that extracts and concatenates all features
into a long vector at the end of the encoder, this sequential
feature extraction scheme can reduce the memory footprint
while retaining its expressivity.

C. Point Cloud Deformation Module

In order to generate a precise and representative point
cloud, it is necessary to capture non-local patterns between
points in the set. In this paper, inspired by the simplicity
of graph convolution and the functionality of X -conv [74],
we propose graphX-convolution (GraphX) which possesses a
similar functionality as the graph convolution but works on
unordered point sets like X -conv [21]. An intuitive illustration
of GraphX is demonstrated in Fig. 3. The operation starts
by mixing the features in the input via a mixing matrix and
then applies a usual FC layer. Let Fj ⊆ Rdj be the set of
dj-dimensional features fed to jth layer of the deformation
network. For notation simplicity, we drop the layer index j and
denote the output set as Fo ⊆ Rdo . Mathematically, GraphX
is defined as

f
(o)
k = h (nk) = h

WT (
∑
fi∈F

wikfi + bk) + b

 , (4)

where f
(o)
k is the kth output feature vector in Fo, wik, bk ∈ R

are trainable mixing matrix and mixing bias corresponding
to each pair (fi, f

(o)
k ), W ∈ Rd×do and b ∈ Rdo are the

weight and bias of the FC layer, and h is an optional non-linear
activation. Instead of learning locally like graph convolution,
GraphX learns globally from the whole point set. The idea
is that in a point cloud, every point can convey more or less
information about others, thus we can let the learning decide
where the network should concentrate. Our method is also
similar to X -conv in the way it takes the relationship of points
into account and learn to be invariant to point order, but while
the mixing matrix of X -conv is computed by a neural network
from a locality of points, ours is directly learned and works
on the whole point set, and hence it is capable of learning a
local-to-global prior.

Following the trend of employing residual connection [3]
to boost gradient flow, we propose ResGraphX, which is a
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residual version of GraphX. The main branch comprises an
FC layer activated by ReLU and followed by a GraphX layer.
As in [3], the residual branch is an identity when the output
dimension of the layer does not change, and an FC layer
otherwise.

D. GraphX Variants

1) Upsampling GraphX: If the size of the point cloud is
large, learning a mixing operation is proportionally expensive.
One workaround is to start with a small point cloud, and then
gradually upsample it in such a way that |Fo| > |F|. Thus,
the computation and memory can be reduced considerably.
Alternatively, GraphX can also be utilized in the downsam-
pling direction which is useful in point cloud encoding. By
default, we use an upsampling version of ResGraphX, which is
termed UpResGraphX. This variant provides a state-of-the-art
performance while significantly reduce the memory footprint
of the mixing matrix in the GraphX convolution.

2) Low-rank GraphX: As point cloud can be compressed
[75], there must be some redundancy that we can leverage
in order to further reduce the memory footprint. An intuitive
way is to break the mixing matrix into a product of two
low-rank matrices such that Wd×do = Ud×kVk×do . However,
a naive choice of U and V would not bring any memory
reduction benefit. Before introducing a constraint for k, we
first define several terms that will enable us to analyze the
low-rank property more conveniently.

Definition 1 (Rank ratio). Let A be an m×n real matrix. Let
A = UV be a decomposition of A in which U ∈ Rm×k and
V ∈ Rk×n. Without loss of generality, assume that m ≤ n.
We define the rank ratio r to be the ratio between k and the
lesser dimension, or

r =
k

m
. (5)

For a reduction of memory, k should satisfy

k × (d+ do) < d× do ⇐⇒ k <
d× do
d+ do

, (6)

or r < do/d
1+do/d

. For a concrete example, if we have do = 2d,
which means the output resolution doubles, we need to set k
so that r < 2

3 to enjoy lower memory consumption.
Next, we need the concept of effective rank (ER) to analyze

the low-rank property of the mixing matrix.

Definition 2 (Effective rank). Let A be an m× n matrix and
ϵ a small real number. Without loss of generality, assume that
m ≤ n. ρ is called an effective rank of A at level ϵ if

ρ∑
k=1

σ2
k > (1− ϵ)

m∑
k=1

σ2
k (7)

where σ1 ≥ σ2 ≥ ... ≥ σm ≥ 0 are the singular values of A.

In other words, ER is the minimum number of retained
principle or major components such that the change in the
Frobenius norm (F-norm) of the matrix is negligible. We
provide the analysis behind the low-rank mixing matrix in
Section IV-D4.

(a) Training without VarMND. (b) Training with VarMND.

Fig. 4: Effect of VarMND on PCDNetv2.

E. Training PCDNetv2

1) Point cloud distance measure: We use Chamfer distance
(CD) to measure the discrepancy between PCDNetv2’s pre-
dictions and ground truths. For the sake of completeness, we
present the CD measure between a 3D point cloud pair (X ,Y)
below

LCD(X ,Y) = dX→Y(X ,Y) + dX←Y(X ,Y)

=
1

|X |
∑
x∈X

min
y∈Y

∥x− y∥22 +
1

|Y|
∑
y∈Y

min
x∈X

∥y − x∥22

(8)
where | · | is the set cardinality.

2) Variance of mean neighborbood distances (VarMND):
Given a point x in a point cloud X , we define the mean
neighborbood distance as the average of distances between
x and its k nearest neighbors

dX (x) =
1

k

∑
y∈Nk(x)

∥y − x∥22 . (9)

Then the expected variance of the mean neighborbood dis-
tances is calculated as

EP [V arx∈X (dX )] =

∫
P
V arx∈X (dX ) (10)

for a point cloud generating distribution P . Intuitively, when
points are regularly distributed, in the local neighborbood
centering at any point, the mean distances from the center
to their neigbors should be similar, or the variance should be
small. We translate this intuition into the VarMND objective

Lvar(X ) = V arx∈X (dX ), (11)

and use a Monte Carlo method to estimate (10). A visual effect
of this regularizer can be seen in Fig. 4. Clearly, when using
VarMND, the output points distribute more regularly (Fig. 4
(b)) without any visible point cluster on the object surface
compared with training without this loss (Fig. 4 (a)).

3) Segmentation mask learning: To learn a binary segmen-
tation mask that can separate objects of interest and back-
ground, we use the common binary cross entropy loss between
the predicted masks M̂ and their corresponding ground truths
M

Lmask(M̂,M) = − 1

h× w

∑
i

Mi log M̂i+(1−Mi) log (1− M̂i),

(12)
and the sum is carried over all h× w pixels.
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TABLE I: Comparison between PCDNetv2 and the original
PCDNet [24]. The performance is comparable, but the training
time (day) is significantly reduced.

CD IoU Time
PCDNet 0.252 0.725 2

PCDNetv2 0.259 0.719 0.45

4) Total loss: We train the network using the following cost
function

L(X ,Y) = αLCD(X ,Y) + βLVarMND(X )(+γLmask) (13)

where α, β and γ are pre-defined weights to control the
influence of each term on the model.

IV. EXPERIMENTAL RESULTS

A. Implementation Details

1) Training procedure: To limit the function space, we
incorporated a small (1e-5) L2 regularization term into the
loss. Compared with our original work [24], we used a batch
size of 64 instead of 4. This helps significantly reduce the
training time while maintaining a very similar performance,
which can be seen from Table I. To accommodate for the
increase of batch size, we increased the learning rate of Adam
optimizer [76] to 3e-4. The exponential decay rates were
initialized to the default values. We multiplied the learning rate
by 0.2 at half and three fourth of the training. For the VarMND
objective, by default we use sixteen neighbors to calculate the
mean nearest distances. We set α and β in the total loss (13) to
be 1e3 and 3e6, respectively, and γ to be 1e1 when applicable.
At every iteration of the training, we initialized a random
point cloud so that given fixed camera intrinsics, the projection
of the point cloud covers the whole image plane. The point
cloud can have 250 or 2k points depending on whether the
upsampling variant of GraphX is used.

2) Data: Firstly, we trained and evaluated our model on
the ShapeNet dataset [77]. We used a subset of the ShapeNet
core consisting of around 50k models categorized into 13
major groups. As there is no ground truth segmentation masks
accompanied with the database, and there is no background
in images, we did not learn a mask prediction branch for this
dataset. We utilized the default train/test split shipped with the
database. The rendered images and ground truth point clouds
were kindly provided by [78].

Secondly, to see how our proposed model can be applied
to realistic images in the wild, we utilized the Pix3D dataset
[79] and evaluated our framework in two scenario. The first
scenario is that we simply used a pre-trained model on
ShapeNet to test on the chair category following the eval-
uation protocol in Pix3D [79]. Next, we trained and tested
the framework directly on Pix3D using the two splits in
Gkioxari et al. [45]. Split S1 is challenging because of the
diversity in colors, orientations, lighting conditions and so on,
while S2 is even more difficult as the 3D models in training
and testing are completely disjoint [79]. To prepare training
images, we cropped the images so that each image contains
exactly one object. We sampled 2000 points from the 3D

object meshes using Poisson-disk sampling [80]. We used the
ground truth segmentation masks to learn the mask prediction
branch detailed in Section III-B.

3) Benchmarking methods: We pitted our PCDNetv2
against current state-of-the-art methods including 3D-R2N2
[78], point set generation network (PSG) [17], Pixel2Mesh
[43], Pixel2Mesh++ [44], AtlasNet [81], Neural Mesh Ren-
derer (NMR) [82], and GAL [83].

By default, we used a model powered by UpResGraphX
(PCDNetv2-URG) if not otherwise mentioned. We addition-
ally tested three more variants of PCDNetv2: (1) a naive model
with an FC deformation network (PCDNetv2-FC), (2) a model
using GraphX (PCDNetv2-GraphX), and (3) a model using
a low-rank UpResGraphX (PCDNetv2-LRURG) with a rank
ratio of 0.5. We also tried a variant with EdgeConv [58].
Because their method does not have an inherent solution to
upsample a point cloud, we set the number of initial points to
2, 000. As a result, we have to reduce the batch size to 4.

In the deformation network of each variant, we use three
corresponding GraphX-derived layers of sizes 512, 256 and
128, respectively. These layers are then followed by a linear
FC layer to output a 3D point cloud. EdgeConv requires to
specify the number of neighbors. We found that setting the
numbers of neighbors for three EdgeConv layers to 5, 11 and
23 can balance best between performance and running time.
Using more neighbors may enhance the performance, but the
training was too slow, so we did not tune further.

4) Metrics: To make it easier for PCDNetv2 to serve as
a baseline in subsequent research, we report three common
metric scores: F-score, CD and intersection over union (IoU).
All the scores are obtained by averaging the scores from three
independent runs. Similar to [43,44], we use F (τ) and F (2τ)
with τ = 1e-4. A higher score indicates a more favorable
result for this metric. We note that we report F-score only for
reference, as this metric and CD have a very strong correlation,
meaning a low CD might well result in a high F-score.

IoU quantifies the overlapping region between two input
sets. Regarding IoU, we first voxelized the point sets into a
323 grid using a simple method in [19] and calculated the
scores. A method with higher IoU score is better.

B. Synthetic Data: Comparison to State-of-the-art Methods

1) Qualitative results: We start by comparing the results
obtained by PCDNetv2-URG, PSG and Pixel2Mesh++ vi-
sually. PSG requires high computation, so it can generate
only 1, 024 points. Pixel2Mesh and Pixel2Mesh++ synthesize
meshes so we sampled 2, 000 points for visualization. We then
render a point cloud from a random view point using Mitsuba
[84]. We cherry-picked some difficult shapes that are not
frequently seen in the database. The results are demonstrated
in Fig. 5. As can be seen from the figure, we visually
outperforms the competing method in all cases. While the
estimated point clouds from PSG are very sparse and have high
variance, and Pixel2Mesh++ fails to produce structures such as
sharp lines and holes, those from PCDNetv2 have pretty sharp
and solid shapes. As can be seen from the results, PCDNetv2
preserves both the appearances and fine details much better
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Image PSG Pixel2Mesh++ URG Ground truth Image PSG Pixel2Mesh++ URG Ground truth

Fig. 5: Qualitative performance on ShapeNet.

TABLE II: CD results on ShapeNet. The best three scores are in boldface. “†” indicates training with half batch size and
learning rate due to GPU memory limit.

Object 3D-R2N2 PSG AtlasNet Pixel2Mesh Pixel2Mesh++ PCDNetv2-URG
Table 1.116 0.517 0.577 0.498 0.388 0.335
Car 0.845 0.333 0.340 0.268 0.249 0.196

Chair 1.432 0.645 0.724 0.610 0.461 0.341
Airplane 0.896 0.43 0.468 0.477 0.422 0.126

Sofa 1.135 0.549 0.621 0.490 0.439 0.274
Rifle 0.993 0.423 0.461 0.453 0.305 0.132
Lamp 4.009 1.193 1.575 1.295 1.135 0.610

Watercraft 1.215 0.633 0.839 0.670 0.508 0.231
Bench 1.891 0.629 0.703 0.624 0.549 0.215

Speaker 1.507 0.756 0.812 0.739 0.635 0.456
Cabinet 0.735 0.439 0.433 0.381 0.337 0.281
Display 1.707 0.722 0.848 0.755 0.566 0.273

Cellphone 1.137 0.438 0.443 0.421 0.325 0.166
Mean 1.445 0.593 0.68 0.591 0.486 0.280

thanks to the global and point-specific features embedded in
our proposed method. Also, as the network is exposed to
multiple views of various objects throughout training, it can
generalize well to unseen objects and novel views.

2) Quantitative results: The metric scores of PCDNetv2-
URG versus others are tabulated in Tables II, III and IV.
As anticipated, PCDNetv2-URG outrun all the competing
methods by a huge gap. For IoU, our method still tops
the table and raises the performance bar previously set by
our method [24]. Similarly, for F-score criterion, we also
outperform Pixel2Mesh++.

C. Realistic Data: A Reality Check

First, we test the generalizability of a pretrained PCDNetv2-
URG on ShapeNet by testing it on the realistic database
Pix3D [79]. Because we did not train a mask branch on

ShapeNet, we applied the available mask and cropped the
images to make them similar to those from ShapeNet, which
is the standard practice in [79]. Next, to check the joint seg-
mentation and reconstruction ability, we trained PCDNetv2-
URG with a mask branch from scratch directly on Pix3D
as described in Section III-B. This will free the model from
its dependency on ground truth mask, which is usually not
available in practice. We detail the results of these two
scenarios in the next two sections.

1) Evaluating pre-trained networks: Following [79], we
tested PCDNetv2-URG on a subset of “chair” class that
contains unoccluded chair images Then, we ran the provided
evaluation protocol and tabulated the CD and Earth Mover’s
distance (EMD) scores in Table V. It can be seen that our
model comfortably outperforms all existing methods by a
large margin. Specifically when compared to PSG in Fig. 6,
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TABLE III: IoU results on ShapeNet. The best scores are in
boldface.

Object 3D-R2N2 PSG GAL PCDNetv2-URG
Table 0.580 0.606 0.714 0.716
Car 0.836 0.831 0.737 0.834

Chair 0.550 0.544 0.700 0.713
Airplane 0.561 0.601 0.685 0.784

Sofa 0.706 0.708 0.739 0.797
Rifle 0.600 0.604 0.715 0.763
Lamp 0.421 0.462 0.670 0.598

Watercraft 0.610 0.611 0.675 0.776
Bench 0.527 0.550 0.709 0.763

Speaker 0.717 0.737 0.698 0.737
Cabinet 0.772 0.771 0.772 0.791
Display 0.565 0.552 0.804 0.777

Cellphone 0.754 0.749 0.773 0.860
Mean 0.631 0.640 0.712 0.762

Image PSG URG Ground truth Image PSG URG Ground truth

Fig. 6: Qualitative performance of PCDNetv2 and PSG on the
Pix3D realistic dataset.

Image Image Failure casesURG URG

Fig. 7: Qualitative results of PCDNetv2-URG on different
object categories in Pix3D. In most cases, the results are
accurate (left), but sometimes the model mistake with its
known objects (right).

our predicted point clouds look more faithfully to the ground
truths. We went to extreme lengths to test the generalizability
of our models by testing on the whole Pix3D dataset. We find
that even though most of the shapes are out-of-distribution, our
model can still make reasonable predictions in most cases.
We cherry-pick some good examples and failure cases, and
show in Fig. 7. Even thouth the model failed to predict the
shape in these cases as they did not see anything similar in
training, the shapes are still recognizable as the model relates
the objects to known shapes thanks to the shape prior learned
by GraphX. Additionally, even designed without occlusion
handling in mind, our model can exhibit a certain level of
robustness against occlusion as can be seen from the table
example in Fig. 7.

2) Training from scratch: First, we compare our method
with MeshRCNN [45] using their evaluation protocol, which
rescales the point clouds to fit a fixed-length bounding
box and measures CD and F1 scores at 0.1, 0.3 and 0.5.
MeshRCNN [45] provided only their results on the S1 split.
This is a fair comparison because they used the ground truth
2D bounding boxes, so similar to ours, their model has to
predict a segmentation mask and reconstruct the object. As
can be seen from Table VI, we outperform MeshRCNN by a
large margin. The low performance MeshRCNN can be the
consequence of the non-differentiable voxel-to-mesh operator
and the many regularizations needed to create a good mesh.
Next, we conduct an ablation study with the masking branch
and report CD (multiplied by 100) in Table VII. Note that we
do not rescale the point clouds in this ablation study. As can be
seen, we obtained better performance compared to the baseline
that does not learn a mask branch. We also experimented a
model similar to Gkioxari et al. [45] that we only predicted
the mask without applying it (w/ mask, w/o mul in Table VII).
Interestingly, in our experiments, we found that doing so did
not benefit the model, and even hurt its performance.

D. Analysis

In this section, if not otherwise mentioned, all the experi-
ments were perfomed on ShapeNet and all the models were
trained without the mask branch.

1) Performance of different variants: In this section, we
analyze the performance of different PCDNetv2 variants in
order to validate our settings. The results can be seen in
Table VIII. Among all the variants of PCDNetv2, in general,
the GraphX family obtains better CD scores than the baseline
whose deformation network is made of only FC layers. This
is no surprise as GraphX is purposely architected to model
both the global semantics and local relationship of points in
the point cloud, which is necessary for characterizing point
sets [16,74]. On the other hand, a deformation network with
FC layers treats every point almost independently (points are
processed independently in the forward pass but gradients are
collectively computed in the backward pass), so the output
coordinates are predicted without conditioning on the seman-
tic shape information nor local coherence, which certainly
degrades the performance. EdgeConv is more competitive to
ours, but is too slow. We measured the wall clock time and
while PCDNetv2-EdgeConv takes 72ms to infer one sample,
PCDNetv2-URG needs only 13ms. In conclusion, our operator
is the best choice here as it can provide a decent performance
while maintaining a good speed.

We note that the proposed loss function has a special effect
on the GraphX layer. This loss operates on a locality of
points, so it is difficult to optimize an FC layer that has only
information about one point and is clueless about any other
points in the point cloud. In that sense, GraphX benefits more
from this loss, as the trained mixing matrix stores the inter-
connection between points.

2) Point-specific and global features: In this section, we
quantitatively and visually verify the importance of the point-
specific and global features produced by projection and
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TABLE IV: F1(τ )/F1(2τ ) results on ShapeNet. The best scores are in boldface.

Object 3D-R2N2 PSG NMR Pixel2Mesh Pixel2Mesh++ PCDNetv2-URG
Table 43.79 / 59.49 53.44 / 73.10 28.40 / 41.73 66.30 / 79.20 71.89 / 84.19 69.10 / 83.69
Car 37.80 / 54.84 50.70 / 77.79 36.66 / 53.93 67.86 / 84.15 68.45 / 85.19 74.28 / 90.05

Chair 40.22 / 55.20 41.60 / 63.70 30.25 / 44.59 54.38 / 70.42 62.05 / 77.68 61.59 / 79.84
Airplane 41.46 / 63.23 68.20 / 81.22 62.10 / 77.15 71.12 / 81.38 76.79 / 86.62 87.96 / 94.37

Sofa 40.01 / 53.42 36.59 / 62.95 25.04 / 39.90 51.90 / 69.83 57.56 / 75.33 62.19 / 83.29
Rifle 28.34 / 46.87 69.96 / 82.65 52.22 / 63.28 73.20 / 83.47 80.74 / 89.29 87.63 / 94.27
Lamp 32.35 / 44.37 41.40 / 58.84 27.97 / 39.41 48.15 / 61.50 62.56 / 74.00 57.15 / 71.20

Watercraft 37.10 / 52.19 51.28 / 70.63 43.71 / 58.85 55.12 / 69.99 62.99 / 77.32 73.87 / 87.12
Bench 34.09 / 48.89 49.29 / 81.22 35.84 / 49.58 57.57 / 71.86 66.24 / 79.67 76.46 / 88.88

Speaker 45.30 / 57.86 32.61 / 56.79 19.46 / 32.20 48.84 / 65.61 54.88 / 71.46 54.16 / 74.89
Cabinet 49.88 / 64.83 39.93 / 67.03 21.04 / 35.16 60.39 / 77.19 65.72 / 81.57 65.95 / 84.43
Display 34.38 / 48.23 40.53 / 63.64 28.77 / 42.76 51.39 / 67.01 60.00 / 75.42 69.72 / 85.22

Cellphone 42.31 / 60.88 55.95 / 79.63 27.96 / 41.83 70.24 / 82.86 74.36 / 86.16 84.19 / 92.96
Mean 39.01 / 54.62 48.58 / 69.78 33.80 / 47.72 59.72 / 74.19 66.48 / 80.30 71.10 / 85.40

TABLE V: Quantitative performance on Pix3D. Results of
competing methods are taken from [79].

CD EMD
3D-R2N2 [78] 0.239 0.211
PSG [17] 0.200 0.216
3D-VAE-GAN [85] 0.182 0.176
DRC [41] 0.160 0.144
MarrNet [86] 0.144 0.136
AtlasNet [81] 0.125 0.128
Pix3D (w/o pose) [79] 0.124 0.124
Pix3D (w/ pose) [79] 0.119 0.118
Ours 0.091 0.105

TABLE VI: Quantitative comparison with MeshRCNN [45]
on the Pix3D S1 split. We highlight the two best numbers.

Metrics URG
(GT mask)

URG
(w/ mask, w/ mul) MeshRCNN

CD 0.207 0.694 1.110
F10.1 40.4 10.8 18.7
F10.3 86.4 56.9 56.4
F10.5 93.2 76.4 73.5

AdaIN2D→3D, respectively. For time consideration, all the
models in this comparison are trained without VarMND. All
other hyperparameters and settings are kept the same.

Table IX demonstrates the quantitative and qualitative re-
sults of the ablation study in the mentioned order. As can be
seen from the table, when either AdaIN2D→3D or projection
is omitted from the model, it achieves roughly the same per-
formance with some metrics higher and the others lower. The
projection feature helps PCDNetv2 in CD and F-score while
AdaIN2D→3D improves IoU. This can be easily explained by
the fact that projection is a point-specific feature that embraces
the details of the shape, which is favored by point-to-point
metrics like CD and F-score. On the other hand, IoU measures
the coverage percentage of two volumetric models, which can
be high when two objects have roughly the same shape but
not necessary all the subtleties. When the two are combined,
both the two scores are significantly boosted, which validates
our design of PCDNetv2.

3) Mixing matrix: We show a typical example of learned
mixing matrices in Figure 8. As can be seen, there is minimal

TABLE VII: Ablation study of the mask branch on Pix3D
when training PCDNetv2-URG from scratch.

Split URG
(GT mask)

URG
(w/o mask)

URG
(w/ mask, w/o mul)

URG
(w/ mask, w/ mul)

S1 0.42 1.59 1.55 1.46
S2 1.58 2.13 2.29 1.98

TABLE VIII: Performance of different PCDNetv2 variants on
ShapeNet. The best scores are in boldface.

Metric FC EdgeConv GraphX URG LRURG
CD 0.295 0.285 0.289 0.280 0.280
IoU 0.759 0.767 0.755 0.762 0.761

F1(τ ) 66.61 67.99 70.12 71.10 70.92
F1(2τ ) 83.15 84.26 84.81 85.40 85.32

variation horizontally. This suggests that the output after
multiplication with the mixing matrix is largely invariant
to permutation in the point cloud as it gives each point
roughly the same weight. In other words, the first layer of
the deformation module builds permutation-invariant features
from the input point features by summing over all points. We
note that while other works [57] hard-code the summation over
all points to learn permutation invariance, we let the network
realize by itself through learning. The second layer continues
to build more robust features from this previous output. As
can be seen from the middle image in Figure 8, this layer
interleaves summation and weighted summation of the points,
and in the last layer, the network mainly performs weighted
summation on the constructed feature set. This helps GraphX
to extract a representative shape encoding from a point cloud,
and as a result PCDNetv2 tends to produce an output with a
clear and recognizable shape (albeit not very accurate) even
in difficult cases like those in Section IV-C.

4) Rank ratio of mixing matrix: In (6), we introduce rank
ratio to enable direct control over the memory consumption
of GraphX by explicitly representing the mixing matrix as a
low rank decomposition. We now discuss the rationale behind
this approach by analyzing the mixing weights of learned
PCDNetv2-URG networks. We observe the ERs at level 0.01
of the mixing matrices of three trained PCDNetv2-URG defor-
mation networks together with their F-norms. In a PCDNetv2-
URG deformation network, there are three ResGraphX layers
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TABLE IX: Quantitative performance of PCDNetv2-URG when either point-specific or global feature is ablated. “-” denotes
the feature that is ablated from the default PCDNetv2-URG. We style-code the best and second best numbers in boldface.

-VarMND -VarMND, -AdaIN2D→3D -VarMND, -Projection
CD IoU F1(τ ) F1(2τ ) CD IoU F1(τ ) F1(2τ ) CD IoU F1(τ ) F1(2τ )

Table 0.298 0.591 67.54 82.92 0.300 0.518 67.09 82.82 0.298 0.502 67.03 82.87
Car 0.190 0.817 72.36 89.58 0.192 0.746 71.49 89.39 0.190 0.726 71.64 89.56

Chair 0.322 0.656 59.61 79.33 0.324 0.570 58.89 79.11 0.322 0.547 58.82 79.20
Airplane 0.122 0.753 87.53 94.52 0.123 0.735 87.40 94.47 0.121 0.736 87.74 94.62

Sofa 0.263 0.763 60.72 82.73 0.267 0.674 59.15 82.17 0.266 0.654 59.16 82.30
Rifle 0.124 0.735 87.64 94.68 0.125 0.722 87.63 94.66 0.124 0.718 87.64 94.70
Lamp 0.545 0.511 54.86 70.90 0.548 0.472 54.71 70.76 0.547 0.468 54.89 71.02

Watercraft 0.216 0.748 72.85 87.60 0.219 0.710 72.33 87.43 0.215 0.707 72.78 87.72
Bench 0.204 0.708 75.45 88.77 0.206 0.620 74.91 88.57 0.204 0.606 75.08 88.75

Speaker 0.412 0.704 54.09 74.69 0.417 0.637 52.92 74.16 0.417 0.627 52.86 74.20
Cabinet 0.261 0.768 65.89 84.20 0.264 0.707 64.88 83.87 0.265 0.698 64.76 83.87
Display 0.255 0.736 69.32 85.14 0.257 0.695 68.52 84.93 0.255 0.688 68.80 85.03

Cellphone 0.161 0.853 83.90 92.87 0.159 0.833 83.80 92.92 0.160 0.835 83.64 92.82
Mean 0.259 0.719 70.14 85.23 0.262 0.665 69.52 85.02 0.260 0.655 69.60 85.13

Layer 1 Layer 2 Layer 3

Fig. 8: Visualization of three mixing matrices in a learned
GraphX network. The weights are in the first, second and
third layers of the deformation module from left to right,
respectively. We applied a sigmoid with high temperature for
better visualization.

TABLE X: Quantitative performance of PCDNetv2-LRURG
across different rank ratios.

0.1 0.3 0.5 0.7 0.9
CD 0.284 0.281 0.280 0.281 0.282
IoU 0.760 0.761 0.761 0.762 0.761
F1 70.53 71.05 70.92 70.88 70.76
F1 85.12 85.37 85.32 85.29 85.23

each of which consists of one GraphX layer in the main branch
and another in the residual branch. The mixing matrices in
PCDNetv2-URG are also in charge of upsampling the initial
point cloud from 250 to 2000 points.

We tabulate our findings in Table XI. As can be seen from
this table, the normalized F-norm and ER tend to increase
along the depth of the network. Also, the residual branch
seems to have lower F-norm but higher ER than the main
branch except for the last layer. However, the rank ratio
exhibits a different pattern as it sinks to bottom at layer 2 and
reaches its peak at layer 3. Our interpretation of these statistics
is as follows. The deformation network first discards much
of the input information by compressing from 250 points to
roughly 50 points, and hallucinates these distilled points to 500
points. In the second layer, the distillation process continues
and is even more intensive with a very high compression
ratio of about 90%. After two consecutive compression and
hallucination processes, most information retained in the point

cloud is useful as evidenced by a high keep rate of 70%. As
briefly mentioned following (6), a rank ratio of 0.7 is higher
than the threshold of 2/3 to actually save up some space,
which suggests that the last layer is not meant for the low rank
decomposition. Nonetheless, these statistics strongly advocate
our explicit regularization on the rank of the mixing matrices.

Next, we trained PCDNetv2-LRURG of five different rank
ratios from 0.1 to 0.9 with regular spacing and show the results
in Table X. As can be seen, a ratio of 0.5 achieves the best
performance. By contrast, IoU is not much affected by the
ratio. This matter will be hashed over in the next section. In
conclusion, a rank ratio of 0.5 is a suitable default choice for
the PCDNetv2-LRURG layer.

5) Effect of VarMND: From Tables II, IV, III and IX, we
can clearly observe the influence of the VarMND loss on the
learned model. A positive change in performance is the gain
in IoU, which increases from 0.719 to 0.762. Moreover, the
effect of VarMND on IoU is very clear from Tables X and XII.
When VarMND is used to regularize the networks, IoU scores
across different rank ratios are similarly high. As the model is
supervised by a point-to-point CD loss between the predictions
and ground truths, it tries to match the fine details of the
ground truth shapes and often the generated point clouds do
not have a solid global appearance, which may result in a
low IoU. To make the matter worse, the IoU metric is not
differentiable. VarMND provides an alternative way to achieve
higher IoU.

Tables XIII and XIV show the results of various hyperpa-
rameter settings for VarMND. When using only 8 neighbors,
we achieved the best CD but the lowest IoU. Conversely, when
using 24 neighbors, we obtained the highest IoU but other
metrics are worse. Therefore, we used 16 neighbors, which
settles for a satisfactory CD and IoU. Similarly, using larger
β tends to increase IoU but increase CD as well. Thus, we
chose a value that brings high IoU and low CD at the same
time, which is 3e6.

6) Scalability: Last but not least, we demonstrate the scal-
ability of our framework thanks to the stochasticity introduced
by the randomly initialized input point cloud. In order to
achieve a denser point cloud, we simply run the network
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TABLE XI: Analyses of the mixing matrices in PCDNetv2-URG deformation networks.

Main branch Residual branch
Layer 1

(250× 500)
Layer 2

(500× 1000)
Layer 3

(1000× 2000)
Layer 1

(250× 500)
Layer 2

(500× 1000)
Layer 3

(1000× 2000)
F-norm 16.04 167.58 627.92 5.81 89.02 692.42

Normalized F-norm 1.00e-4 3.00e-4 3.00e-4 4.65e-5 2.00e-4 3.33e-4
Effective rank 54.7± 4.9 60.3± 6.0 703.7± 2.1 62.7± 10.5 74.0± 11.1 694.7± 2.5

Rank ratio 0.219 0.121 0.704 0.251 0.148 0.695

TABLE XII: Quantitative performance of PCDNetv2-LRURG
without VarMND across different rank ratios.

Rank ratio CD IoU F1(τ ) F1(2τ )
0.1 0.263 0.689 69.76 85.07
0.3 0.262 0.671 69.80 85.14
0.5 0.261 0.706 70.00 85.14
0.7 0.261 0.675 69.83 85.16
0.9 0.261 0.682 69.82 85.13

TABLE XIII: Quantitative performance of PCDNetv2-URG
when using VarMND with different neighborhood sizes.

# neighbors CD IoU F1(τ ) F1(2τ )
8 0.274 0.752 71.15 85.50
16 0.280 0.762 71.10 85.40
24 0.285 0.765 70.72 85.15
32 0.290 0.764 70.19 84.80

forward pass multiple times with different random initial input
point clouds and then concatenate the generated point sets. We
note that as shown in Section IV-D3, because GraphX learns
to be invariant to set permutation by averaging the point set, it
removes the randomness in the input and hence is not suitable
for this task. Therefore, we use the variant with FC decoder.
We produced point clouds of sizes 4000, 10000 and 20000
by running forward propagation two, five and ten times. A
visualization of the outputs can be seen in Fig. 9. As can be
seen, the point clouds can be arbitrarily dense, unlike previous
works which always have an upper bound for the size.

V. CONCLUSION

We presented PCDNetv2, a point cloud deformation net-
work that can deform an initial point cloud to the object shape

Image 1x 2x 5x 10x Ground truth

Fig. 9: A scalability test. Generated point clouds can have
an arbitrary size, from 2000 (1×), 4000 (2×), 10000 (5×) to
20000 (10×) points.

TABLE XIV: Quantitative performance of PCDNetv2-URG
when using VarMND with different β.

β CD IoU F1(τ ) F1(2τ )
1e6 0.272 0.755 71.10 85.55
3e6 0.280 0.762 71.10 85.40
1e7 0.295 0.764 70.33 84.78
1e8 0.324 0.759 68.69 83.41

given by a single object image. To deform the random point
cloud, we first extracted global and point-specific features
for every point. The point-specific features were obtained by
projecting the random point cloud onto the 2D feature maps
extracted from an image encoder, and the global features were
distilled from the 2D feature maps by AdaIN2D→3D, a concept
borrowed from style transfer literature. To deal with realistic
images containing background, we optionally learn a mask and
apply it to the 2D feature maps before fusing point cloud and
image features. Using the extracted features, we then deformed
the point cloud by a network consisting of GraphX, a new layer
that took into account the inter-correlation between points. To
achieve better performance, we proposed a new loss function
called VarMND, which aims to improve the regularity of the
output point clouds. The framework is also able to scale the
size of output point cloud thanks to the stochasticity in the
random input. We conducted a series of experiments to validate
the efficacy of the proposed method, and then thoroughly
discussed the effectiveness of each individual component of
our framework. Our future work should push further into
the direction of single image 3D reconstruction directly from
realistic data and possibly reconstructing the whole scene.
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