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ABSTRACT

We present GradMask, a simple adversarial example detection
scheme for natural language processing (NLP) models. It uses gra-
dient signals to detect adversarially perturbed tokens in an input
sequence and occludes such tokens by a masking process. Grad-
Mask provides several advantages over existing methods includ-
ing improved detection performance and an interpretation of its
decision with a only moderate computational cost. Its approxi-
mated inference cost is no more than a single forward- and back-
propagation through the target model without requiring any addi-
tional detection module. Extensive evaluation on widely adopted
NLP benchmark datasets demonstrates the efficiency and effec-
tiveness of GradMask. Code and models are available at https:
//github.com/Han8931/grad_mask_detection.
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1 INTRODUCTION AND RELATEDWORK

The advances in deep learning have revolutionized natural language
processing (NLP) with state-of-the-art performance in practically
every task. However, it has been shown that such systems are
significantly vulnerable to specifically crafted adversarial attacks
[50] at all stages of development and deployment [2, 8, 21, 51, 52, 63].
This is troubling as there is little to no change in the adversarially
crafted test distributions compared to the training distribution [40].

In response to the adversarial attacks, various defense schemes
have been proposed (see [62] for a survey). These approaches can be
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Figure 1: An illustration of GradMask’s adversarial exam-

ple detection process on a binary classification task. Given

an input x, an attacker tries to find an adversarial exam-

ple x′ by searching for the best perturbation (compel) that
flips the original model prediction (expressed as the dotted

line). GradMask attempts to identify the candidate pertur-

bation(s) through the gradient signal and masks the top-𝐾

tokens to generate a masked sequence m. The final decision

is made by measuring the largest difference in model’s confi-

dence for x′ and m.

grouped into three main categories: (i) adversarial training [30, 31,
45, 68], (ii) synonym substitution based methods [7, 20, 56, 57, 67],
and (iii) certified robustness [18, 55].

Another branch of defense strategy that is underexplored in NLP
is the adversarial example detection based schemes. While the above
defense schemes aim to improve the adversarial robustness of NLP
systems, adversarial example detection methods are designed to
reject suspicious inputs, thus they share the same goal of defeating
the adversarial attacks [1]. Detection-based approaches provide sev-
eral advantages over adversarial robustness improvement methods.
The most obvious advantage is that they do not require to modify
the target model architecture or the training procedure, because
they typically work as a separate module. Consequently, they do
not compromise the model performance on clean datasets. Secondly,
they are able to identify the intention (adversarial or not) of adver-
sarial attacks, so users can take actions (reject or revise) accordingly.
Additionally, the “discard-rather-than-correct” strategy could be a
desirable feature for production systems where models are expected
to retain certain information about the original data distribution
(e.g., customer specific information for product reviews), and any
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change of the model through adversarial examples - whether cor-
rect or not - will be undesirable. Finally, the detection algorithms
may provide a better strategy for developing defense methods by
informing which parts of an input sequence are perturbed [66].

Unlike the other defense schemes, the textual adversarial de-
tection problem has not been explored much in NLP. The very
first work is the discriminate perturbations (DISP) framework [66],
which consists of two BERT [6] based perturbation discriminator
and embedding estimator. To provide supervising signals for the
discriminator, DISP randomly samples adversarial examples and
learns to discriminate clean examples from the adversarial exam-
ples. In contrast, a more recent adversarial detection work, the
frequency-guided word substitutions or FGWS [33], does not need
an additional training process. The key assumption of FGWS is that
adversarial attack algorithms tend to exploit words that are rarely
exposed during a target model’s training. However, this approach is
limited to detection of only word-level attacks and its effectiveness
against attacks that do not rely on infrequent words is unclear.
Especially, our experiments with a constrained high-frequency vo-
cabulary show that attackers can still find successful attacks by
using frequent tokens (Appendix B.4). Unlike those synonym-based
adversarial attack detection algorithms, Le et al. [22] proposed a
detection framework for universal adversarial trigger or UAT [54],
which is a sequence that is concatenated to input texts to mis-
guide the model prediction. However, UAT tends to significantly
violate grammars and semantics of the original inputs compared to
synonym-based attacks.

Ourwork in this paper focuses on detecting synonym substitution-
based adversarial attacks. Our proposed method attempts to reduce
assumptions about characteristics of potential attacks. In practice,
we have no access to a perturbation process of attackers. Thus,
we first deviate from the word-frequency assumption by utilizing
gradient signals as guidance. Specifically, we harness the gradient
signal to detect (potential) adversarially perturbed tokens in an
input sequence by investigating the sensitivity of the model predic-
tion [3, 25, 49, 61], which indicates the network’s response to an
adversarial input. The identified tokens are subsequently occluded
by a mask token and fed to the model to measure the change in
the model’s confidence with respect to the original prediction. The
masking process allows avoiding searching synonyms of potential
perturbations generated from attackers that are unknown to the
target systems in practice. Figure 1 illustrates our gradient-guided
detection, GradMask.

The gradient-based attribution of neural model’s prediction has
been studied widely in deep learning [25, 46, 49]. Some prior work
in NLP uses the gradient to identify important words in a sequence
[26, 35]. However, to the best of our knowledge, this is the first
work on detecting textual adversarial attacks by attributing the
model prediction via gradient signal analysis.

GradMask has several advantages over the previous methods.
First, it does not require any additional modules for synonym search
or frequent word count that are essential in the previous methods
[33, 66]. Second, it works entirely without any prior knowledge
about potential attacks, which is a more practical setup. Third, it
works without any pre-training. Finally, it provides a weak inter-
pretation of decision by identifying adversarially perturbed tokens.

The main contributions of this work are:

• A novel gradient-guided adversarial example detection method,
GradMask, which makes minimal assumptions about potential
attacks.
• Extensive experiments with Transformer-based models [53] for
textual classification tasks and a natural language inference task
against various textual adversarial attacks demonstrating Grad-
Mask’s advantage over state-of-the-art detection algorithms.
• Results showing GradMask outperforms baseline algorithms
(including the traditional anomaly detection methods) in terms
of AUROC, EER, and FPR95 measures.
• Further analysis showing GradMask also achieves promising
results in detecting character-level attacks [38].
• Ablation studies showing the effectiveness of the gradient-based
search and the operation components of GradMask.

2 METHOD

In this section, we present our proposed method. We first establish
the notations in Section 2.1.

2.1 Notations

We consider a standard text classification task for a model 𝑓𝜽 (·)
with parameters 𝜽 ∈ 𝑅𝑝 . The model 𝑓𝜽 (·) is trained to fit a data
distribution D over pairs of an input sequence x = [𝑥1, · · · , 𝑥𝑇 ] of
𝑇 tokens and its corresponding label𝑦 ∈ {1, . . . ,𝐶}with𝐶 being the
number of classes. We also assume a loss function L(𝜽 , x, 𝑦) such
as a cross-entropy loss. The output of the model is a probability
distribution that satisfies: 0 ≤ 𝑓𝜽 (x)𝑖 ≤ 1 and

∑𝐶
𝑖=1 𝑓𝜽 (x)𝑖 = 1,

where 𝑖 is the class index. We denote the final prediction as 𝑐 (x) =
argmax𝑖 𝑓𝜽 (x)𝑖 and true (ground truth) label as 𝑐∗ (x) = 𝑦∗.

Given an input sequence x, a successful adversarial example x′
can be defined as follows: the semantic dissimilarity between x and
x′ has to be small according to some dissimilarity measure 𝛿 (x, x′),
and 𝑐 (x′) ≠ 𝑐∗ (x). These two conditions denote that an adversarial
example has to maintain semantic meaning of the original input
but misguide the model prediction [4].

2.2 Gradient-guided Token Masking for

Adversarial Example Detection

GradMask first finds salient tokens that significantly attribute to
the model prediction, 𝑐 (x); see Figure 1 for an illustration. A simple
and widely employed approach is the gradient-based attribution
analysis [3, 25, 49]. However, due to the discrete nature of texts,
we cannot directly exploit the gradient-based approach. In order
to deviate the issue, we compute a gradient of the loss function L
with respect to the word embedding e𝑡 , where e𝑡 is a simple linear
projection of a token 𝑥𝑡 . The gradient can be expressed as follows:

g𝑡 = ∇e𝑡L(𝜽 , x, 𝑐 (x)) (1)

Note that the above loss is computed with respect to the model’s
final prediction 𝑐 (x) and not the ground truth label 𝑦∗.

Subsequently, we measure the amount of stimulus of the input
tokens toward the model prediction by computing the 𝐿2-norm
of g𝑡 , i.e., | |g𝑡 | |2. The stimulus is considered as a saliency score
of the tokens and they are considered in descending order of the
magnitude of | |g𝑡 | |2 following [25]. GradMask only considers the
top-𝑝 portion of the input tokens in x. Specifically, the number
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Figure 2: Changes in model confidence (in log scale) on an

adversarial example from AGNews dataset [64] with regard

to token masking. The orange colored bars are the top-3

tokens detected by the gradient-based attribution. In the log
scale, a shorter bar height indicates a larger change in model

confidence.

of chosen 𝐾 salient tokens is ⌊𝑇 × 𝑝⌋, where the brackets denote
the floor operation. The sampled 𝐾 salient tokens are masked to
generate a masked input sequence m = [𝑥1, . . . ,𝑚𝑡 , . . . , 𝑥𝑇 ] with
𝑡 being the position of a salient token, and𝑚𝑡 is the mask token,
[MASK].

The rationale behind the masking approach is based on two
assumptions. The first assumption is that adversarial examples are
the result of sophisticated optimization algorithms rather than the
result of random perturbations [10, 14]. Thus, we conjecture that
masking the suspicious tokens which are carefully crafted can
significantly drop the model confidence. Figure 2 presents a real
example showing how model confidence changes in a log scale
(shorter bar indicates larger change) with token masking on an
adversarial sample. The sample text was adversarially perturbed
at the first and second positions (peer and less). As shown in the
chart, the model confidences are significantly dropped by masking
those perturbed tokens.

The second assumption is that NLP models are generally robust to
a weak-level of noise as they typically employ regularization methods
like dropout [48] and layer normalization [5] during training. The
partial information loss in clean examples due to masking can be
offset by the overall context of the input text. As shown in Figure 2,
masking clean tokens marginally decreases the model confidence
and this observation is further supported by our experiments in
Table 6.

The masked sequence m is then fed into the target model to get
a prediction 𝑓𝜽 (m)𝑖 , where 𝑖 = 𝑐 (x). We then square the confidence
change to assign a stronger penalty to the higher changes. Formally,

𝑤 =

(
𝑓𝜽 (x)𝑖 − 𝑓𝜽 (m)𝑖

)2
(2)

The final decision is determined by an indicator function I(𝑤, 𝜏)
defined as follows:

I(𝑤, 𝜏) =
{
0 if𝑤 ≤ 𝜏
1 else

(3)

where 𝜏 is a pre-defined threshold. Algorithm 1 presents the overall
process of GradMask.

Algorithm 1 GradMask: Gradient-based Masking for Adversarial
Example Detection.
Require: Input sequence x = [𝑥1, · · · , 𝑥𝑇 ], target model 𝑓𝜽 , top-𝑝

masking portion 𝑝
1: Initialize 𝐾 = ⌊𝑇 × 𝑝⌋.
2: Compute 𝑓𝜽 (x)𝑖 , where 𝑖 = 𝑐 (x). ⊲ model pred. for x
3: Get 𝐿 := {| |g1 | |, · · · , | |g𝑇 | |} via Equation (1).
4: Sort 𝐿 in descending order.
5: m := x
6: while 𝑘 ≤ 𝐾 do

7: | |g| |𝑡 ← 𝐿[𝑘]
8: 𝑚𝑡 ← [MASK]
9: end while

10: 𝑤 = (𝑓𝜽 (x)𝑖 − 𝑓𝜽 (m)𝑖 )2

3 EXPERIMENT SETTINGS

In this section, we present our experiment settings: the datasets,
target models, adversarial example generation, and evaluation met-
rics.

3.1 Datasets

We evaluate GradMask on two conventional NLP tasks: text CLaS-
sification (CLS) and Natural Language Inference (NLI). For classifica-
tion, we use the IMDb [29], AG News [64], and Stanford Sentiment
Treebank (SST) [47] datasets that are widely adopted for bench-
marking adversarial robustness of NLP systems. The IMDb dataset
contains movie reviews labeled with positive or negative sentiment
labels. The AG News (AG) dataset contains news articles from
more than 2,000 news sources and the samples are categorized into
the four largest topic classes. The SST dataset provides movie re-
views with fine-grained sentiment labels. We turn them into binary
positive/negative labels (SST-2) to follow the setting of FGWS [33].

In NLI, the task is to predict the entailment relationship between
a pair of sentences - whether the second sentence (Hypothesis) is
an Entailment, a Contradiction, or is Neutral with respect to the first
one (Premise). We use the Multi-Genre NLI (MNLI) dataset [58] for
this task. Table 1 gives an overview of the datasets.

Table 1: A summary of the datasets used in our work. M and

MM denote matched and mismatched, and P and H represent

premise and hypothesis, respectively.

Dataset Task Train Test # Classes Avg. Len

IMDb CLS 25k 25k 2 215
SST-2 CLS 67k 1.8k 2 20
AG CLS 120k 7.6k 4 43

MNLI NLI 393𝑘 M 9.8𝑘 3 P:19.7/H:10.4MM 9.8𝑘

3.2 Target Models

We evaluate GradMask on three Transformer-based [53] sequence
modeling architectures, which have been widely employed in NLP.
We first consider large-scaled pre-trained languagemodels,RoBERTa-
base [27] and BERT-base [6], both of which have 124 million pa-
rameters. We also evaluate on a relatively smaller model called
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Table 2: A summary of the target models and their clean

testset performance in terms of accuracy.

Model Dataset Acc (%)

RoBERTa
-base

IMDb 93.32
AG 94.47
SST-2 95.50
MNLI 88.04/87.13 (M/MM)

BERT
-base

IMDb 91.75
AG 94.75
SST-2 93.47

DistilBERT
-base

IMDb 90.78
AG 94.45
SST-2 92.20
MNLI 81.62/81.95(M/MM)

DistilBERT-base [42], which has approximately 40% fewer pa-
rameters than RoBERTa-base. Table 2 shows the standard task
performance of the target models on each dataset.

The models are optimized by AdamW [28] with a linear adaptive
learning rate scheduler. The texts in IMDb are comparatively longer
than those in AG and SST-2. For the IMDb classification task the
maximum sequence lengths are set to 200.1 Further details about
the model architectures and settings are provided in Appendix A.
All of the experiments are conducted on an Intel Xeon Gold 5218R
CPU-2.10GHz processor with a single Quadro RTX 6000 GPU.

3.3 Adversarial Example Generation

We generated adversarial examples against the selected target mod-
els via four different attack algorithms, including widely adopted
state-of-the-art synonym substitution-based token-level attacks, as
used in previous work [7, 33, 45, 60, 67].
• BAE or BERT-based Adversarial Examples [12] is a black-box
attack for generating adversarial examples. BAE adopts a pre-
trained BERT for identifying target tokens. For our experiments,
we adopted a replacement-based attack model called BAE-R.
• A2T or Attacking to Training [60] perturbs target tokens selected
via a gradient-based search algorithm, and their synonyms are
generated from a counter-fitted word embedding [34].
• TextFooler is a simple token-level black-box attack algorithm
proposed by Jin et al. [19]. The target token is identified via cosine
similarity between word embeddings of candidate tokens.
• PWWS or Probability Weighted Word Saliency [39] is a greedy
word substitution-based attack algorithm. The word replacement
order is determined by a word saliency score computed based on
the change in the model’s confidence. The word synonym set is
built via the lexical database, WordNet [9].
We generate 1,000 pairs of clean examples and their correspond-

ing adversarial examples for each attack algorithm by sampling
from each test dataset. However, for attack algorithms with a lower
attack success rate (ASR) such as BAE-R and A2T (c.f.,Table 3),
we use the entire test dataset in order to maximise the number of
adversarial examples generated. The number of samples and the
1This is mainly to enable a fair comparison with FGWS. FGWS has to compute a huge
cosine similarity matrix between words, which causes a memory issue without a tight
setting for the maximum sequence length.

ASR for different attacks are provided in Table 3. All attacks are im-
plemented by using the publicly available TextAttack library [32],
which has been widely used in NLP robustness research [11, 13, 60].

3.4 Evaluation Metrics

We now evaluate the performance of GradMask and compare it to
the state-of-the-art. FGWS [33] was mainly evaluated via F1 score,
but we follow the standards from the out-of-distribution (OOD)
sample detection literature [16, 36, 65] for a thorough and better
understanding of the adversarial example detection methods.

The adversarial example detection can be considered as a binary
classification problem of verifying positive (adversarial) vs. negative
(clean) class. We evaluate the true positive rate (TPR or recall)
against false positive rate (FPR) defined as:

𝑇𝑃𝑅 =
1
𝑛+

∑︁
𝑖

I(𝑤+, 𝜏) 𝐹𝑃𝑅 =
1
𝑛−

∑︁
𝑖

I(𝑤−, 𝜏), (4)

where the superscripts + and − denote the positive and the negative
classes, respectively, and I is the indicator function as defined in
Equation (3) Based on these two rates, we evaluate the detection
methods with the following evaluation metrics:
• AUROC stands for the Area Under Receiver Operating Char-
acteristic curve. For each operational setting of 𝜏 from 0 to 1,
TPR and FPR can be plotted. This curve is called the receiver
operating characteristic curve (ROC curve).
• EER or Equal Error Rate refers to a point where the FPR equals
the false negative rate (FNR). It can be computed as 1−TPR in
a ROC curve. Even though AUROC provides the overall perfor-
mance in a varying threshold setting, detection algorithms would
be employed in their optimal threshold setting. EER can be used
to summarize the performance of the detection algorithm. A
lower EER value indicates better performance of the system.
• FPR95 refers to the FPR at 95% TPR. FPR95 quantifies how many
clean examples have to be rejected to detect 95% of the adver-
sarial examples. FPR95 is a very important metric for evaluating
detection algorithms [1]. A lower FPR95 score is often strongly
required for systems that require a high level of system safety or
security.

4 RESULTS AND ANALYSIS

We first evaluate GradMask on widely employed NLP datasets and
compare it with the baselines (Sections 4.1, 4.2, and 4.3). Then, we
analyze the adversarially perturbed token detection performance of
GradMask (Section 4.4). Subsequently, we investigateGradMask’s
potential against a non-synonym based (character-level) attack
(Section 4.5). Finally, we conduct ablation studies to investigate the
effectiveness of GradMask (Section 4.6).We also provide additional
experimental results and analysis in the Appendix.

4.1 Detection for Text Classification Tasks

For adversarial example detection, we compare the performance of
GradMask with that of FGWS [33], which is the state-of-the-art
textual adversarial detection algorithm.2

As shown in Table 3, GradMask shows better AUROC, FPR95,
and EER scores in most of the tasks. Particularly, it significantly
2https://github.com/maximilianmozes/fgws

https://github.com/maximilianmozes/fgws
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Table 3: Adversarial example detection results of FGWS and GradMask (GM). ASR denotes the attack success rate of an attack

algorithm; higher ASR indicates a stronger attack. Higher (↑) AUROC, lower (↓) EER and FPR95 indicates a better detection

algorithm. 𝐾 denotes the number of masked tokens in an input text selected by GradMask .

Model Dataset Attack # Samples ASR (%) AUROC (%) ↑ EER (%) ↓ FPR95 (%) ↓ 𝐾

TN TP FGWS GM FGWS GM FGWS GM

RoBERTa-base

IMDb

BAE-R 1000 1000 63.45 66.56 95.15 40.51 7.35 94.05 8.90 3
A2T 1000 1000 52.25 84.04 95.05 19.11 8.30 87.66 9.80 1
TextFooler 1000 1000 82.44 85.40 96.40 17.20 5.60 86.52 6.70 1
PWWS 1000 1000 87.41 90.92 95.43 12.03 7.35 77.68 8.60 3

AG

BAE-R 1000 1000 15.75 62.59 83.82 44.95 19.15 94.15 35.20 3
A2T 937 937 13.04 75.09 83.49 27.80 20.38 90.26 40.02 2
TextFooler 1000 1000 84.89 89.68 96.53 12.30 5.35 79.53 5.60 3
PWWS 1000 1000 65.96 94.74 95.69 6.46 7.70 50.80 9.30 3

SST-2

BAE-R 1000 1000 58.17 60.08 79.40 43.80 23.30 94.33 61.70 3
A2T 349 349 20.07 65.57 78.16 33.95 23.07 93.14 52.44 1
TextFooler 1000 1000 93.28 74.14 84.82 29.05 17.10 91.66 35.40 3
PWWS 1000 1000 85.18 85.25 85.49 16.76 19.62 82.11 38.50 1

BERT-base

IMDb

BAE-R 1000 1000 54.98 65.56 92.27 40.79 9.60 94.02 11.40 3
A2T 1000 1000 52.63 86.14 91.51 16.80 9.85 84.01 12.90 3
TextFooler 1000 1000 98.72 85.46 95.82 16.85 5.30 85.36 5.50 3
PWWS 1000 1000 96.90 89.49 95.93 13.19 6.70 78.21 8.20 3

AG

BAE-R 895 895 12.43 58.12 75.33 47.04 31.06 94.51 62.57 1
A2T 717 717 9.96 70.49 75.59 31.03 30.13 91.15 65.83 1
TextFooler 1000 1000 86.96 88.18 95.60 15.10 8.20 80.21 11.00 3
PWWS 1000 1000 66.01 93.45 95.00 8.30 9.65 60.39 15.10 3

SST-2

BAE-R 1000 1000 59.10 60.52 80.04 43.15 24.65 93.98 58.00 3
A2T 415 415 24.38 68.56 73.45 31.81 30.12 92.22 54.94 1
TextFooler 1000 1000 96.34 75.93 83.04 25.95 19.70 90.24 37.70 3
PWWS 1000 1000 88.81 84.53 83.91 16.85 20.30 83.06 42.40 3

DistilBERT-base

IMDb

BAE-R 1000 1000 72.89 66.41 92.46 40.97 12.70 94.01 17.10 1
A2T 1000 1000 68.40 87.73 91.56 14.44 12.85 80.85 18.70 3
TextFooler 1000 1000 93.02 87.96 94.03 14.97 9.95 81.81 12.40 1
PWWS 1000 1000 99.60 91.87 94.02 11.09 10.70 72.17 16.00 3

AG

BAE-R 1000 1000 14.31 59.98 78.45 46.10 26.55 94.25 57.90 1
A2T 861 861 11.99 73.43 78.43 29.91 27.12 90.42 55.75 1
TextFooler 1000 1000 89.53 90.33 95.54 12.65 7.90 76.97 10.0 3
PWWS 1000 1000 73.64 95.31 94.70 6.45 9.70 46.79 13.90 3

SST-2

BAE-R 1000 1000 62.34 62.88 78.18 40.90 26.15 93.69 61.00 3
A2T 502 502 29.90 72.87 74.42 27.39 30.38 90.63 47.01 3
TextFooler 1000 1000 96.90 74.65 80.80 28.55 22.25 91.13 45.50 3
PWWS 1000 1000 89.13 85.58 82.07 15.45 22.25 81.45 45.50 3

outperforms FGWS for all the models (RoBERTa, BERT-Base and
DistilBERT) in terms of the FPR95 score, which is an important
metric for systems with high security requirements. In addition, it
achieves notably better AUROC and EER scores inmost of the exper-
iment scenarios. This tendency is well presented in Figure 3, which
shows ROC curves of FGWS and GradMask for the RoBERTa
model trained on IMDb. The ROC curves of FGWS tend to increase
steeply and remain stable. However, as TPR increases, the FPR
of FGWS tends to proportionally increase after some point. Espe-
cially for BAE-R (Figure 3 (a)), the tendency of the FPR increase is
quite steep. In contrast, GradMask tends to reach 95% TPR at a
considerably lower FPR and has larger AUROC scores.

Another interesting observation is that there is a proportional
relationship between the adversarial robustness of the model and
the AUROC of GradMask. For example, an average ASR of four
adversarial attacks on RoBERTa, BERT, and DistilBERT models
fine-tuned on IMDb are 71.39%, 75.81%, and 83.48%, respectively.
The lower average ASR indicates that the model is more robust to

adversarial attacks. The average AUROC scores of these models
are 95.51%, 93.88%, and 93.02%, individually. Similarly, we observe
the same trend in EER of GradMask. We investigate this aspect
further in Appendix B.3 by evaluating GradMask’s performance
with an adversarially trained [14] robust model, where we fine-tune
a DistilBERTmodel on adversarial examples crafted by TextFooler.

We also observe that FGWS tends to underperform against BAE-
R, A2T, and TextFooler attacks while it shows comparable scores for
identifying PWWS attacks in some setups. A possible explanation
may be related to the nature of the synonym search strategy. FGWS
identifies synonyms of infrequent words in input texts viaWordNet,
which is also adopted in PWWS to build synonym sets. Thus, FGWS
may face some difficulty in finding a synonym set for a perturba-
tion generated by attack algorithms that do not use WordNet. In
contrast, our proposed method GradMask, which minimizes the
assumptions about potential attack algorithms, generally shows
better performance for all evaluation setups.
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GradMask FGWS

Figure 3: ROC curves of FGWS and GradMask with the RoBERTamodel. The horizontal line is at the 95% TPR and the red

and the green vertical lines at the FPRs of GradMask and FGWS, respectively (best viewed in color).

Table 4: Adversarial example detection results of FGWS and GradMask(GM) on theMNLI dataset.

Model Dataset Attack # Samples ASR (%) AUROC (%)↑ EER (%) ↓ FPR95 (%)↓ 𝐾

TN TP FGWS GM FGWS GM FGWS GM

RoBERTa-base

MNLI-M

BAE-R 1000 1000 64.23 52.77 69.99 50.96 33.80 95.17 73.50 1
A2T 1000 1000 49.85 66.34 69.92 37.96 33.95 92.82 65.50 1
TextFooler 1000 1000 91.41 70.25 74.24 34.35 29.50 92.00 55.40 1
PWWS 1000 1000 83.06 76.94 74.15 27.38 31.05 88.88 65.47 1

MNLI-MM

BAE-R 1000 1000 64.60 55.13 73.84 48.73 31.25 94.76 65.80 1
A2T 1000 1000 49.50 66.53 74.69 35.71 29.80 92.97 58.70 1
TextFooler 1000 1000 91.91 70.37 75.65 33.55 27.85 92.04 55.60 1
PWWS 1000 1000 83.54 77.94 77.78 26.05 27.63 88.55 58.47 1

Finally, GradMask and FGWS tend to show consistently better
performance in detecting strong attacks such as TextFooler and
PWWS which are more aggressive than the others. We conjec-
ture that stronger attacks select and engineer the crucial tokens
more carefully, so masking these tokens would hugely reduce the
effectiveness of these attacks.

4.2 Detection for Natural Language Inference

We further compare GradMask with FGWS on an NLI task using
the MNLI dataset. As shown in Table 4, the overall performance
of GradMaskis significantly better than that of FGWS except for
the PWWS attack scenario, which is consistent with the experi-
mental results on the classification tasks presented in Section 4.1.
One interesting observation is that GradMask tends to show bet-
ter performance across the evaluation metrics on the MNLI-MM
dataset than on theMNLI-M dataset despite the lower clean example
prediction accuracy of the model on MNLI-MM dataset (M: 88.04,
MM: 87.13). In contrast, FGWS shows no distinctive differences in
performance between the MNLI-M and MNLI-MM datasets.

4.3 Comparison with Anomaly Detection

Methods

We conducted additional experiments to compare GradMask with
popular anomaly detection algorithms such as Maximum Softmax
Probability (MSP) [15] and One-Class Support Vector Machine with
linear kernel (OCSVM) [43] that are widely adopted as baselines in
various anomaly detection problems [1, 23, 44, 59].

From the results in Table 5, we notice that GradMask signifi-
cantly outperforms the baselines by a large margin. These results
are consistent with the results reported in Section 4.1. GradMask
achieves significantly lower FPR95 and EER scores than those of

Table 5: Comparison with anomaly detection methods (MSP

andOCSVM) for PWWSattack detection results onRoBERTa.

Dataset Method AUROC (%) ↑ EER (%) ↓ FPR95 (%) ↓

IMDb
MSP 92.23 14.50 34.43

OCSVM 92.23 14.50 34.43
GM 95.43 7.35 8.60

AG
MSP 94.44 12.07 24.60

OCSVM 94.44 12.07 24.60
GM 95.69 7.70 9.30

SST-2
MSP 87.86 18.51 58.90

OCSVM 87.86 18.51 58.90
GM 85.49 19.62 38.50

MSP andOCSVM for all the datasets. Additionally, OCSVM achieves
the best performance with a linear kernel and the results are similar
to that of MSP. This can be attributed to the linear property of
model prediction distributions.

We further analyze the statistics of the features extracted from
MSP and GradMask methods. Table 6 presents two statistics of
the extracted features, mean (Avg) and standard deviation (Std).
The values are averaged over 1,000 samples. As shown in the table,
the overall mean differences between the 𝑤 (c.f., Equation (2)) of
adversarial examples (𝑤-A) and 𝑤 of clean examples (𝑤-C) are
higher than that of MSP, which implies that GradMask feature𝑤
is more distinguishable. Specifically, for IMDb, MSP shows 43.3 (=
92.88−49.58), but GradMask shows 55.47 (59.75−4.28) at 𝐾 = 3.

4.4 Adversarial Token Detection

We now analyze howGradMask attributes the model prediction on
adversarial examples at the token level. Figure 4 shows perturbed
token detection rates forDistilBERT and RoBERTa on two datasets,
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Table 6: Statistics (Avg and Std) of extracted features. The

first row of each dataset denotes the maximum softmax prob-

ability (MSP) of the RoBERTamodel for adversarial (Conf-A)

and clean (Conf-C) samples, respectively. The subsequent

rows show the mean and standard deviation of𝑤 of Grad-

Mask while varying the number of mask tokens 𝐾 .

Dataset 𝐾 𝑤-A/Conf-A 𝑤-C/Conf-C
(Avg±Std) (Avg±Std)

IMDb

MSP -/49.58±49.67 -/92.88±13.53
1 32.48±29.39/- 2.81±12.03/-
2 53.71±36.92/- 3.84±18.04/-
3 59.75±34.53/- 4.28±18.85/-

AG

MSP -/49.43±49.55 -/89.75±15.58
1 25.11±24.04/- 2.09±11.01/-
2 47.18±31.39/- 3.32±16.03/-
3 50.84±30.18/- 3.77±16.79/-

Figure 4: Adversarially perturbed token detection rates at

top-1, top-2 and top-5 for GradMask.

(a) IMDb (b) AGNews
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IMDb and AG. We report detection rates at top-1, top-3, and top-5,
which refers to the total number of adversarially perturbed tokens
identified within the top-𝐾 values of𝑤 in Equation (2).

In case of DistilBERT, we notice that GradMask shows 48.17%
and 31.82% detection rates for IMDb and AG within the top-5 pre-
dictions, respectively. On the other hand, for RoBERTa, it shows
72.04% and 48.85% detection rates for IMDb and AG within the
top-5 predictions.

4.5 Character-Level Attack Detection

To investigate the potential of GradMask against non-synonym-
based attacks, we conduct an additional experimentwith a character-
level attack [38] from the TextAttack library [32]. Even though
character-level attacks are known to be relatively simple to defend
at a preprocessing stage with a spell or a grammar checker [38],
our motivation for this experiment is to demonstrate the potential
of GradMask against non-synonym based attacks.

We first generated 400 pairs of clean examples and their corre-
sponding adversarial examples from AG against RoBERTa-base
and Distilbase, respectively. We compare GradMask with the
MSP algorithm [15] in Table 7. We see that our method shows
promising results with AUROC scores of 85.58% and 75.80% for
RoBERTa-base and DistilBERT-base, respectively.

Table 7: Detection results against a character-level attack.

Dataset Model AUROC (%) ↑ EER (%) ↓ FPR95 (%) ↓ 𝐾

MSP GM MSP GM MSP GM

AG RoBERTa 65.76 85.58 38.38 18.38 81.00 58.75 3
DistilBERT 70.66 75.80 33.50 29.50 76.00 72.25 1

4.6 Ablation Study

To understand GradMask better, we conduct two ablation studies:
(i) Impact of square operation in Equation (2). As mentioned,

the main rationale for using the square operation in Equation (2)
is to make changes in confidence caused by the masking opera-
tion more distinctive. We compare the detection performance of
the squared model confidence change 𝑤 to the without-squared
confidence change,

√
𝑤 on three datasets with the RoBERTa-base

model. As shown in Table 8, the square operation significantly im-
proves the detection performance for all evaluation measures. On
average, AUROC and EER scores are improved 21.28% and 14.06%,
respectively. Especially, FPR95 scores are remarkably dropped by
77.57% on average. In the case of AG, the standard deviation of

√
𝑤

of adversarial example is 44.21% but that of𝑤 is 31.78%.
(ii) Effectiveness of the gradient-basedmasking strategy. We

compare our gradient-based search strategy against a brute-force
search (BF), which identifies the best masking position by masking
a token in an input text one at a time. Each masked sequence m𝑡
with a masked token at position 𝑡 is then fed into the target model to
get a prediction 𝑓𝜽 (m𝑡 )𝑖 , where 𝑖 = 𝑐 (x). This process gives 𝑇 such
confidence scores and the maximum confidence change caused by
masking a token at 𝑡 ′ is considered as the best masking position.

Based on the assumption that masking an adversarial token in
an adversarial example tends to drop the model confidence signifi-
cantly, the masking position 𝑡 ′ identified by the BF search can be
considered as the optimal masking position. However, as shown in
Table 9, GradMask significantly outperforms BF in all evaluation
metrics. Specifically, we observe that BF search is too aggressive in
that it changes a model’s prediction on a clean example too steeply.
In the case of GradMask for AG, the average squared confidence
change for clean examples (i.e., 𝑤-C as defined in Section 4.3) is
around 2.8, while the average𝑤-C is 40.97 for BF. Thus, this study
shows the effectiveness of GradMask in identifying masking posi-
tions. Note that this study was performed with randomly sampled
100 pairs of clean examples and the corresponding adversarial ex-
amples due to the computational cost of BF search.

5 CONCLUSION

In this paper, we have proposed a simple adversarial example de-
tection scheme, GradMask, which utilizes gradient signals as a
guidance to detect adversarially perturbed tokens. This guidance
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Table 8: Ablation study of the square operation in Equa-

tion (2).

Dataset Feature ↑ AUROC(%) ↓ EER(%) ↓ FPR95(%) 𝐾

IMDb
√
𝑤 71.24 26.35 100 1
𝑤 95.45 8.80 14.30 1

AG
√
𝑤 77.35 20.95 99.70 1
𝑤 95.28 9.30 13.90 1

SST-2
√
𝑤 63.80 32.60 99.70 1
𝑤 85.49 19.62 38.50 1

Table 9: Comparison of masking candidate search methods.

Dataset Search AUROC ↑ EER ↓ FPR95 ↓ CPU Time ↓
Method (%) (%) (%) sec

IMDb BF 62.41 44.00 73.00 581.22
GM-𝐾 = 1 96.08 8.00 12.00 14.60

AG BF 73.73 29.50 51.00 117.68
GM-𝐾 = 1 94.01 10.00 17.00 16.03

additionally provides a weak interpretation about its decision by
informing us which tokens are critical to a model’s prediction. The
experimental results show that GradMask is a promising approach
as an adversarial attack detection algorithm for NLP systems. Partic-
ularly, it shows significantly low FPR95 scores, which is a highly de-
sirable property for NLP systems with high-security requirements.
In addition, GradMask does not require an additional module or a
strong assumption about potential attacks which are more realistic
in practice. In conclusion, our detection strategy can serve as a
useful tool for identifying adversarial attacks for protecting the text
classification systems.
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A MODEL PARAMETERS

Table 10 summarizes the parameter settings of the target models
used for adversarial example detection experiments.

Table 10: Parameter settings of target models. AL and

MaxLen denote the adaptive linear learning rate scheduler

and maximum sequence length, respectively.

Model Parameters

RoBERTa
-base

Optimizer AdamW
Batch Size (IMDb) 24(16)
Epochs 10
LearningRate 10−5
LearningRate Scheduler AL
MaxLen 200

BERT
-base

Optimizer AdamW
Batch Size (IMDb) 24(16)
Epochs 10
LearningRate 10−5
LearningRate Scheduler AL
MaxLen 200

DistilBERT
-base

Optimizer AdamW
Batch Size (IMDb) 24(16)
Epochs 10
LearningRate 10−5
LearningRate Scheduler AL
MaxLen 200

B SUPPLEMENTARY EXPERIMENTS

This section provides a supplementary analysis of GradMask for
a better understanding of the algorithm. We first investigate the
relationship between the multi-masking effect and detection per-
formance of GradMask in Appendix B.1. We then study the perfor-
mance of GradMask for a task that is sensitive to a single critical
token (Appendix B.2). Subsequently, we conduct an experiment
to analyze a performance of GradMask with adversarially robust
model (Appendix B.3). Finally, we discuss about the word frequency
assumption and adversarial robustness (Appendix B.4).

During the experiments, we used a RoBERTa-base model for
each task and generated adversarial examples via PWWS attack
with TextAttack library [32] for Appendix B.1 and Appendix B.2.
For each task, 1,000 clean examples and their corresponding 1,000
adversarial examples are used as a test set.

B.1 GradMask with Multi-Masking.

We investigate the impact of the masking strategy of GradMask
on its detection performance. Table 11 summarizes the experiment
results on three different datasets. As shown in the table, the overall
EER and FPR95 scores tend to improve as the number of masks in
input texts increases but AUROC decreases for some datasets. One
of the possible explanations is that the increased number of masked
tokens may discard some critical information of input texts and
the information loss decreases the detection performance at some
operational settings.

Table 11: Adversarial example detection results of Grad-

Mask with the multi-masking strategy.

Model Dataset 𝐾 AUROC (%) ↑ EER (%) ↓ FPR95 (%) ↓

RoBERTa

IMDb
1 95.45 8.80 14.30
2 95.32 7.50 10.60
3 95.43 7.35 8.60

AG
1 95.28 9.30 13.90
2 95.44 8.00 12.60
3 95.69 7.70 9.30

SST-2
1 85.49 19.62 38.50

2 84.17 20.10 43.30
3 84.11 19.35 40.90

BERT

IMDb
1 95.47 8.65 15.30
2 95.82 6.60 9.30
3 95.93 6.70 8.20

AG
1 95.09 10.35 16.70
2 94.77 10.70 15.30
3 95.00 9.65 15.10

SST-2
1 83.83 22.00 51.30
2 83.72 21.10 45.80
3 83.91 20.30 42.40

Table 12: Adversarial example detection results of RoBERTa-

Largemodel forWG dataset. Acc denotes detection accuracy.

Dataset Method AUROC (%) FPR95 (%) Acc (%)

WG
MSP 52.45 93.95 53.73

OCSVM 55.15 92.83 54.62
GM 60.78 91.37 60.34

B.2 Detection of Adversarial Attack in

Winograd Schema Challenge.

One of the potential criticisms of masking-based textual adversarial
example detection approaches is the information loss caused by
their masking strategies. It is likely that the gradient-based token
saliency evaluation approach may decide to mask a critical token
that is important for a model’s prediction and drop the confidence
of the model prediction.

However, as shown in Table 6, model confidence changes for
clean examples are not significant in most cases. A possible expla-
nation is that the models are able to capture sufficient contexts from
neighboring texts. Nevertheless, we further investigate this possible
issue on a task that relies on a few critical tokens. To this end, we
investigate the proposed method on the Winograd Schema Chal-
lenge [24]. The Winograd Schema Challenge (WSC) is a benchmark
for commonsense reasoning and natural language understanding.
The Winograd schema consists of a pair of sentences differing in
one or two words with a highly ambiguous pronoun that is difficult
to solve for statistical models.

One of WSC benchmark datasets is WinoGrande (WG) dataset
[41]. WG dataset is split into 40k training samples and 1.2k vali-
dation samples. We first trained a RoBERTa-Large model on the
training set and our best model achieves an accuracy of 72% against
the validation set. Again, we sampled 1,000 clean examples from the
validation set and generated 1,000 adversarial examples via PWWS
attack.

As shown in Table 12,GradMask achieves the best performances
for all evaluationmetrics. However, its scores are significantly lower
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than those of other tasks such as IMDb and AG. We conjecture that
the overall performances of GradMask can be improved further
as the model’s standard performance increases because GradMask
relies on the standard task performance of models for extracting
better features.

B.3 GradMask with Adversarially Robust

Model

We investigate the detection performance of GradMask with an
adversarially robust model. For this, we train a Distil-BERT-base
via adversarial training (AT) [14] to improve the adversarial robust-
ness of the model. We first sample 1,000, 3,000 and 3,000 adversarial
examples (AE) via TextFooler from the Movie Review (MR)3 [37],
SST-2, and AG datasets’ training sets, respectively. The sampled
examples are then used to fine-tune the models and the trained
models are attacked again by TextFooler. The post-attack accuracy
(A-Acc) of the trained models are summarized in Table 13.

Table 13: Comparison of adversarial example detection re-

sults of GradMask on an adversarially robust model (Distil-

BERT-base trained with adversarial examples). For example,

MR-AE means Distil-BERT-base is trained with adversarial

examples of MR dataset. C-Acc and A-Acc refer to clean test-

set accuracy and post-attack accuracy, respectively.

Dataset ↑ C-Acc ↑ A-Acc ↑ AUROC(%) ↓ EER(%) ↓ FPR95(%) 𝐾

MR 83.20 2.85 53.86 45.49 96.75 2
MR-AE 79.74 8.91 74.09 31.13 67.55 2

AG 94.45 9.90 95.54 7.90 7.90 3
AG-AE 93.70 16.76 95.31 8.55 11.00 3

SST-2 92.20 2.85 80.80 22.25 22.25 1
SST-2-AE 83.41 6.14 34.39 60.65 97.10 1

The models are evaluated using 1,000 pairs of clean examples
of each testset and their corresponding adversarial examples. As
shown in the table, AT tends to improve A-Acc but it typically hurts
the clean testset accuracy (C-Acc). Particularly, the C-Acc of the
model trained via adversarial training with adversarial examples
of SST-2 (SST-2-AE) drops significantly and the overall detection
performance of GradMask declines. However, the models with
AG-AE and MR-AE which show marginal C-Acc performance drop
tend to reach or outperform the performance of the models trained
on clean datasets.

B.4 Discussion on Word Frequency and

Adversarial Robustness

According to Mozes et al. [33], the brittleness of NLP systems
against adversarial examples would be attributed to the distribution
of word frequency in a training set. However, one of the widely
accepted explanations about the existence of adversarial examples
insists that adversarial examples are a result of the standard opti-
mization rather than data distribution [17]. We investigated how
the word frequency can affect the model’s robustness via a series
of experiments. Consequently, we find that deep NLP systems can

3MR dataset consists of movie reviews labels with positive or negative sentiments.

still be fooled by adversarial examples with words that are frequently
exposed during their training stage.

To validate this claim, we trained the victim models with a word
frequency constraint. Specifically, we built a new vocabulary set𝑉 ′
to be comprised of only the top-10% frequently used words from the
original vocabulary set 𝑉 . The vocabulary-constrained models are
designed to block all infrequent words that are out of𝑉 ′ in an input
sequence by masking those tokens. We first evaluated the model
performance to observe how the vocabulary constraint affects the
model performance. As shown in Table 14, the standard task per-
formance of the victim models under the constraint (Acc-𝑉 ′) only
marginally decreases (about 1 - 4%) compared to the original accu-
racy (Acc-𝑉 ). These results show that masking infrequent tokens
does not hurt the model performance significantly. Next, we gen-
erated 1,000 pairs of samples via the PWWS attack algorithm [39]
against the word frequency constrained models. Each sample pair
consists of a clean example and its corresponding adversarial ex-
ample that successfully fools the target model. According to the
infrequent word assumption [33], the models trained on 𝑉 ′ are ex-
pected to be robust against adversarial attacks. However, from the
results in Table 14, we notice that they showed significant brittle-
ness against adversarial attacks. For instance, DistilBERT models
show approximately 10% accuracies for both datasets when under
attack (AAcc). Similarly, RoBERTa models show under attack ac-
curacies of 7.6% and 30.8% for AGNews and IMDb, respectively.
Thus, we claim that the vulnerabilities of NLP systems cannot only
be attributed to the infrequent words.

Table 14: Word frequency and adversarial robustness. Acc-𝑉

and Acc-𝑉 ′ refer to accuracies of the model with the original

vocabulary 𝑉 and constrainted vocabulary 𝑉 ′, respectively.
𝑥 ′ ∈ 𝑉 ′ denotes a ratio of perturbed tokens that are part of

𝑉 ′. AAcc denotes an under attack accuracy of the model with

𝑉 ′.

Model Dataset Acc-𝑉 Acc-𝑉 ′ 𝑥 ′ ∈ 𝑉 ′ AAcc

DistilBERT IMDb 92.98 92.17 71.73 10.4

AG 94.37 90.78 68.92 15.6

RoBERTa IMDb 95.33 95.15 67.38 7.6

AG 95.22 94.87 44.26 30.8
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