
DISTRIBUTION PADDING IN CONVOLUTIONAL NEURAL NETWORKS

Anh-Duc Nguyen, Seonghwa Choi, Woojae Kim, Sewoong Ahn, Jinwoo Kim, and Sanghoon Lee

Yonsei University

ABSTRACT

Even though zero padding is usually a staple in convolutional
neural networks to maintain the output size, it is highly sus-
picious because it significantly alters the input distribution
around border region. To mitigate this problem, in this paper,
we propose a new padding technique termed as distribution
padding. The goal of the method is to approximately main-
tain the statistics of the input border regions. We introduce
two different ways to achieve our goal. In both approaches,
the padded values are derived from the means of the border
patches, but those values are handled in a different way in
each variant. Through extensive experiments on image clas-
sification and style transfer using different architectures, we
demonstrate that the proposed padding technique consistently
outperforms the default zero padding, and hence can be a po-
tential candidate for its replacement.

Index Terms— Deep learning, convolutional neural net-
work, image padding

1. INTRODUCTION

Convolutional neural networks (CNNs) have played an im-
portant role in the advancement of most areas in image pro-
cessing and computer vision in recent years [1–8]. Because
of the large performance gap between deep learning and tra-
ditional models, it is not surprising that huge effort has been
invested in tweaking the mechanisms of CNNs to constantly
improve the state of the art. Most studies concentrate on ar-
chitectures [9,10], initialization [11,12], optimization [13,14],
activation [12], and so on. However, little attention has been
paid to padding, which is easily the most essential part of the
convolution operation. The main purpose of padding is to
maintain the border information and keep the input resolution
fixed. Otherwise, the output becomes smaller after each con-
volution and the spatial information at the borders is washed
away quickly [15].

Since zero padding is simple and works well in many
tasks, it is perhaps the most common technique in practice.
It works by taping zeroes, which are irrelevant data, along
the border of the input. This, however, seriously alters the
spatial distribution of the image at its borders. It may seem

This work was supported by Samsung Research Funding Center of
Samsung Electronics under Project Number SRFC-IT1702-08.

(a) A Lena image (b) A zero-padded
Lena image

(c) A Lena padded
by our method

(d) A histogram of
the top region of (a)

(e) A histogram of
the top region of (b)

(f) A histogram of
the top region of (c)

Fig. 1: (a) A Lena image padded by (b) zero padding, (c) our
method (mean-interpolation padding), and their correspond-
ing histograms (d-f). Best viewed in color and zoom.

that the ratio between the border regions and whole image is
extremely small, which may have little impact on the perfor-
mance of the CNNs. We argue that while the former is true,
the latter may not because the filters are shared spatially, and
hence they have to adapt themselves to the distributions of
both the plausible pixel values as well as the spooky ones at
the borders, which might hinder the learning of the networks.
Even if the input has zero mean, zero padding shrinks the vari-
ances, which still confuses the CNNs. This can be seen as a
form of an implicit and unwanted regularization on the filters.
Particularly, it is reminiscent of Dropout [16] but without any
randomness. An example of a zero-padded image and its his-
togram of the top region corresponding to the top stride of the
convolutional filters are shown in Figs. 1(b)&(e). Clearly, the
method seriously changes the distribution of the border region
by introducing a new mode at 0.

There has been several alternatives to zero padding.
Firstly, padding with constant other than zero is also a le-
git choice although it is hardly selected in practice. Also,
circular padding aims to simulate circular convolution, but
its use is only in some specific areas [17]. Among all the
options, reflection padding is the most popular scheme. It
works by reusing the border data but in a reverse direction.
At face value, this seems to eliminate the problem of zero
padding because the padded values are from the input. How-

4275978-1-5386-6249-6/19/$31.00 ©2019 IEEE ICIP 2019

ever, due to the multiplicity of the data, the distribution is
still altered, which in fact does not solve any problem posed
by zero padding at all. Recently, an implicit padding method
called partial-convolution padding has been proposed [18].
In each stride of the convolution, the method considers only
the valid region in the patch, and then rescales based on the
ratio between the whole patch and the area of the valid pixels.
However, due to its definition, the ratio is always larger than
1, so the output can be larger or smaller than it should be.

In this paper, we offer practitioners another choice by pre-
senting a padding scheme named distribution padding. The
method aims to preserve the local spatial distributions of the
data at the borders of the input, which justifies the name of the
method. An example of the padded image can be seen in Fig.
1(c)&(f). Clearly, the method seems to smooth the distribu-
tion of the border but it still keeps the same shape and modes
of the original. The padding works by considering the local
means of the input at its borders. Specifically, we propose two
variants of the method, which differs in the way the means are
handled. Through thorough experiments with various models
in image classification and style transfer, we demonstrate that
our method outperforms zero padding in these tasks and is
efficient enough to take over its lead role in convolution.

2. DISTRIBUTION PADDING

In order to maintain the statistics of an image at the borders,
one intuitive way is to pad the image with the means of the
border regions. However, it is not obvious the mean values of
which patches should be used for padding because a padded
pixel is usually seen by filters multiple times during convo-
lution. Also, if the receptive fields at the borders are padded
with the means of the valid regions, then the variances will be
underestimated. In this respect, we propose two variants of
our padding scheme that can resolve both the problems.

2.1. Mean-interpolation padding

Since input pixels are usually seen multiple times by the net-
work filters, the padded values should be defined to be com-
patible with multiple neighboring regions. To this end, we
propose to pad the image with the interpolated means of the
input patches corresponding to the sliding windows when per-
forming convolution. The rationale is that image pixels are lo-
cally correlated, and so the mean values of the nearby patches
are similar to each other. Also, padding the input by its inter-
polated local means directly preserves the first-order statistics
in each local region.

Let us denote the input feature map to a convolutional
layer as I and its value at a tuple coordinate p is I(p). Suppose
the size of the input is h×w and the filters in the convolutional
layer have height hf and width wf . To calculate the means,
we simply perform a valid convolution between the input and
a box filter as

Algorithm 1 Mean-interpolation padding

Input: input I of shape h × w, padding size
(bhf/2c, bwf/2c), box filter of shape hf × wf

Output: Ĩ
Î := convolve (I, b)

Ĩ := resize
(
Î , (h+ 2hf//2, w + 2wf//2)

)
Ĩ [hf//2 : h+ hf//2, wf//2 : w + wf//2] := I

Î = I ∗ b, (1)

where b(p) = 1
hf∗wf

∀p is a box filter of size hf ×wf and “∗”
indicates a linear convolution operator. Because the convolu-
tion is valid, the size of Î is (h− 2bhf/2c)× (w− 2bwf/2c)
where “b·c” denotes the floor operator. To maintain the size
after the convolutional layer, the input should be of size (h+
2bhf/2c)× (w+2bwf/2c). Therefore, we simply resize Î to
the desired size by bilinear interpolation to become Î ′. This
interpolation kills two birds with one stone: (1) it produces
the values that are compatible with their surrounding neigh-
bors, and (2) it introduces some necessary correlated “noise”
so that the variance in each padded image patch is not severely
underestimated. Finally, the center region of Î ′ is replaced
with the original input I . Specifically, let the output of the
padding scheme be Ĩ and S be the set of indices of pixels
that are inside the rectangular box in Ĩ defined by two ver-
tices (bhf/2c, bwf/2c) and (h+ bhf/2c, w + bwf/2c). Ĩ is
defined as

Ĩ(p) =

{
Î ′(p) if p /∈ S
I(p′) otherwise

, (2)

where p′ = p − (hf , wf). The pseudocode of the algorithm
is shown in Algorithm 1.

2.2. Mean-reflection padding

Reflection padding is carried out by duplicating the image val-
ues along the borders but in reverse order. Inspired by the way
reflection padding works, we introduce a variant of the above
scheme called mean-reflection padding. Specifically, after ob-
taining Î , we first resize it to the original size h × w instead
of the padded size, and then pad it using reflection padding to
obtain Î ′ of size (h+2bhf/2c)× (w+2bwf/2c). As above,
the last step is to replace the center regions of Î ′ by the input
data. A summary of the technique is shown in Algorithm 2.
We further note that in both variants, we DO NOT backprop
the error through the padded regions.

3. EXPERIMENTAL RESULT

In this section, we demonstrate how different padding rou-
tines work in image classification and image style transfer.

4276

Algorithm 2 Mean-reflection padding

Given: input I of shape h × w, padding size
(bhf/2c, bwf/2c), box filter of shape hf × wf .
Output: Ĩ

Î := convolve (I, b)

Ĩ := resize
(
Î , (h,w)

)
Ĩ := reflection pad

(
Ĩ , (hf//2, wf//2)

)
Ĩ [hf//2 : h+ hf//2, wf//2 : w + wf//2] := I

All the codes for the experiments are in Python/Theano1 [19].

3.1. Image classification

3.1.1. Setup

In this task, we trained CNNs on the training set of CIFAR-
10 [20], which contains 50, 000 images equally distributed in
10 categories. We slightly resized the images from 32 × 32
to 48 × 48 so that the valid convolution can be carried out in
the late layers. To verify the benefit of the proposed padding
scheme, we enlisted two of the most well-known network ar-
chitectures: VGG19 [4] and ResNet34 [10]. While VGG19
is a vanilla stack of convolutional layers with 3 × 3 filters,
ResNet34 is made up of residual blocks in which information
flow is enhanced by an identity mapping from early layers.
We note that for ResNet34, we removed the first pooling layer
and for VGG19, we used batch normalization [13] after each
convolutional layer and discarded all the fully connected lay-
ers as well. We optimized the multinoulli cross-entropy loss
between the softmax outputs and ground truth labels using
Adam [14]. We considered zero padding, reflection padding,
and partial-convolution-based padding [18] as references in
our benchmark. For each padding scheme, we ran totally 5
times, each time 100 epochs. We tested the networks on the
test set every 1, 000 iterations to plot the classification error
rates. Needless to say, except for padding, we kept all settings
the same.

3.1.2. Result

The classification errors of each padding method are demon-
strated in Fig. 2. As can be seen, in VGG19, zero padding has
the worst performance compared to other schemes. On the
other hand, mean-interpolation and mean-reflection schemes
achieve the best error rates, which reinforces our statement
that the invalid distribution of images harms the learn-
ing of CNNs. Meanwhile, reflection padding and partial-
convolution have a similar performance and both methods
are slightly better than zero padding. This observation is
consolidated by the numerical results in the first column in
Table 1, which demonstrates the average error rates in the

1Available at https://git.io/fh97z

(a) (b)

(c) (d)

Fig. 2: Classification error rates on test data during train-
ing. (a) and (c) are the error rates obtained by VGG19 and
ResNet34, respectively. (b) and (d) magnify the last 28, 000
iterations in (a) and (c), respectively. Best viewed in color and
zoom.

Table 1: Average classification error rates on test data during
the last 5 test times. The best and second best errors obtained
by each architecture are in blue and red, respectively.

Padding scheme
VGG19

(%)
ResNet34

(%)
Zero 10.97 12.09

Reflection 10.80 11.78
Partial-convolution 10.77 11.80
Mean-interpolation 10.54 11.74

Mean-reflection 10.67 12.33

five most recent tests. It is obvious that the proposed schemes
outperform all the other methods significantly. However,
the story is slightly different when it comes to ResNet34.
While mean-interpolation still defends its first place, mean-
reflection padding goes from the second best to worst. The
reason possibly is that the border mean values are repeated
by reflection padding, and the genuine border information
are added via the residual connection, the pixel distributions
along the borders are hugely altered, which leads to the poor
performance of the method. Reflection padding and partial-
convolution are still competitive, followed by zero padding.
This once again is made clearer by the quantitative results in
the second column of Table 1.

It is noticeable that the influence of the proposed method
on ResNet34 is not as substantial as VGG19. It is because
different from the straightforward sequence of convolutional
layers in VGG19, the residual connection in a ResNet34 block
helps carry plausible border information from early layers and

4277

Fig. 3: From left to right: Input images, reflection padding, zero padding, mean-interpolation padding, and mean-reflection
padding. Notice the border of the images. Best viewed in color and zoom.

adds it to the output of the block, which dampens the “border
effect” in zero padding. This bit of preserved information
maintains more or less the distribution along the feature map
border, and so the performance is not as severely affected.

In regard to the processing time, mean-interpolation takes
roughly the same time with reflection padding in our im-
plementation while mean-reflection takes moderately longer,
which is obvious because it includes the reflection padding
per se. Zero padding is the fastest method because of not only
its simplicity but also its CuDNN implementation. Partial-
convolution is second to zero padding in terms of speed. All
in all, our method is efficient and practical enough to be an
alternative to contemporary schemes such as zero padding
and reflection padding.

3.2. Image style transfer

3.2.1. Setup

For the style transfer task, we employed WCTnet [5] as the
backbone. The method works by hooking up five different
autoencoding models together and the transfer of style is car-
ried out by a whitening and coloring transform in the latent
space of each network. The encoders are different parts of a
pre-trained VGG19 and the decoders are basically symmet-
ric to the corresponding encoders. To benchmark a padding
scheme, we employed it in both the VGG encoder and the
decoders. We trained the decoders on the MS COCO train-
ing split [21] for 3 epochs using the default hyperparameter
choices. The testing was carried out on a separate set provided
in the original paper. A complete list of settings can be found
in the original paper [5]. For references, we displayed only

the results by zero padding and reflection padding because
we failed to train the largest decoder using partial-convolution
padding with the default hyperparameters.

3.2.2. Result

The visual results of different padding methods are exhibited
in Fig. 3. This task requires the use of VGG-like architectures
because other architectures perform poorly in this task [22].
Hence, the weakness of zero padding is further revealed. It
is fairly easy to spot the striping artifacts at the borders in the
results by zero padding. On the other hand, the results ob-
tained by the two proposed techniques are artifact-free, and
are similar to those of reflection padding, which is the default
choice in the original paper, in terms of performance. The
failure of partial-convolution may be due to the scaling prob-
lem discussed above, and it suggests that the method might
not be suitable in some areas.

4. CONCLUSION

In this paper, we have introduced an image padding method
to maintain not only the size of the convolution output but
also the spatial distribution of the input border data. We pre-
sented two variants both of which are based on the first-order
statistics of the input border. Thorough experiments showed
that our proposed technique not only outperformed the most
widely used scheme, zero padding, in image classification and
style transfer but also was on par or better than contemporary
alternatives in these tasks.

4278

5. REFERENCES

[1] Jongyoo Kim, Anh-Duc Nguyen, Sewoong Ahn, Chong
Luo, and Sanghoon Lee, “Multiple level feature-based
universal blind image quality assessment model,” in
2018 25th IEEE International Conference on Image
Processing (ICIP). pp. 291–295, IEEE. 1

[2] Woojae Kim, Jongyoo Kim, Sewoong Ahn, Jinwoo
Kim, and Sanghoon Lee, “Deep video quality asses-
sor: From spatio-temporal visual sensitivity to a convo-
lutional neural aggregation network,” in Proceedings of
the European Conference on Computer Vision (ECCV),
pp. 219–234. 1

[3] Jongyoo Kim, Anh-Duc Nguyen, and Sanghoon Lee,
“Deep cnn-based blind image quality predictor,” IEEE
transactions on neural networks and learning systems, ,
no. 99, pp. 1–14, 2018. 1

[4] Karen Simonyan and Andrew Zisserman, “Very deep
convolutional networks for large-scale image recogni-
tion,” arXiv preprint arXiv:1409.1556, 2014. 1, 3

[5] Yijun Li, Chen Fang, Jimei Yang, Zhaowen Wang, Xin
Lu, and Ming-Hsuan Yang, “Universal style transfer via
feature transforms,” in Advances in Neural Information
Processing Systems, pp. 386–396. 1, 4

[6] Anh-Duc Nguyen, Seonghwa Choi, Woojae Kim, and
Sanghoon Lee, “A simple way of multimodal and ar-
bitrary style transfer,” in ICASSP 2019-2019 IEEE In-
ternational Conference on Acoustics, Speech and Signal
Processing (ICASSP). pp. 1752–1756, IEEE. 1

[7] Sewoong Ahn and Sanghoon Lee, “Deep blind video
quality assessment based on temporal human percep-
tion,” in 2018 25th IEEE International Conference on
Image Processing (ICIP). pp. 619–623, IEEE. 1

[8] Jongyoo Kim, Hui Zeng, Deepti Ghadiyaram, Sanghoon
Lee, Lei Zhang, and Alan C Bovik, “Deep convolutional
neural models for picture-quality prediction: Challenges
and solutions to data-driven image quality assessment,”
IEEE Signal Processing Magazine, vol. 34, no. 6, pp.
130–141, 2017. 1

[9] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and
Kilian Q Weinberger, “Densely connected convolutional
networks,” in CVPR, vol. 1, p. 3. 1

[10] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Deep residual learning for image recognition,” in
Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778. 1, 3

[11] Xavier Glorot and Yoshua Bengio, “Understanding the
difficulty of training deep feedforward neural networks,”
in Aistats, vol. 9, pp. 249–256. 1

[12] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian
Sun, “Delving deep into rectifiers: Surpassing human-
level performance on imagenet classification,” in Pro-
ceedings of the IEEE international conference on com-
puter vision, pp. 1026–1034. 1

[13] Sergey Ioffe and Christian Szegedy, “Batch nor-
malization: Accelerating deep network training by
reducing internal covariate shift,” arXiv preprint
arXiv:1502.03167, 2015. 1, 3

[14] Diederik P. Kingma and Jimmy Ba, “Adam: A method
for stochastic optimization,” in Proceedings of the 3rd
International Conference on Learning Representations
(ICLR). 1, 3

[15] Andrej Karpathy, “Cs231n convolutional neural net-
works for visual recognition,” Neural networks, vol. 1,
2016. 1

[16] Nitish Srivastava, Geoffrey E Hinton, Alex Krizhevsky,
Ilya Sutskever, and Ruslan Salakhutdinov, “Dropout: a
simple way to prevent neural networks from overfitting,”
Journal of Machine Learning Research, vol. 15, no. 1,
pp. 1929–1958, 2014. 1

[17] Tsun-Hsuan Wang, Hung-Jui Huang, Juan-Ting Lin,
Chan-Wei Hu, Kuo-Hao Zeng, and Min Sun, “Omni-
directional cnn for visual place recognition and naviga-
tion,” arXiv preprint arXiv:1803.04228, 2018. 1

[18] Guilin Liu, Kevin J. Shih, Ting-Chun Wang, Fitsum A.
Reda, Karan Sapra, Zhiding Yu, Andrew Tao, and Bryan
Cantazaro, “Partial convolution based padding,” Report,
2018. 2, 3

[19] James Bergstra, Olivier Breuleux, Frédéric Bastien, Pas-
cal Lamblin, Razvan Pascanu, Guillaume Desjardins,
Joseph Turian, David Warde-Farley, and Yoshua Ben-
gio, “Theano: A cpu and gpu math compiler in python,”
in Proceedings of the 9th Python in Science Conference,
pp. 1–7. 3

[20] Alex Krizhevsky and Geoffrey Hinton, “Learning mul-
tiple layers of features from tiny images,” Report, Cite-
seer, 2009. 3

[21] Tsung-Yi Lin, Michael Maire, Serge Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and
C Lawrence Zitnick, “Microsoft coco: Common objects
in context,” in European conference on computer vision.
pp. 740–755, Springer. 4

[22] Alexander Mordvintsev, Nicola Pezzotti, Ludwig Schu-
bert, and Chris Olah, “Differentiable image parameteri-
zations,” Distill, vol. 3, no. 7, pp. e12, 2018. 4

4279

