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Abstract

In this paper, we present a novel deep method to re-
construct a point cloud of an object from a single still im-
age. Prior arts in the field struggle to reconstruct an ac-
curate and scalable 3D model due to either the inefficient
and expensive 3D representations, the dependency between
the output and number of model parameters or the lack
of a suitable computing operation. We propose to over-
come these by deforming a random point cloud to the ob-
ject shape through two steps: feature blending and defor-
mation. In the first step, the global and point-specific shape
features extracted from a 2D object image are blended with
the encoded feature of a randomly generated point cloud,
and then this mixture is sent to the deformation step to pro-
duce the final representative point set of the object. In the
deformation process, we introduce a new layer termed as
GraphX that considers the inter-relationship between points
like common graph convolutions but operates on unordered
sets. Moreover, with a simple trick, the proposed model can
generate an arbitrary-sized point cloud, which is the first
deep method to do so. Extensive experiments verify that we
outperform existing models and halve the state-of-the-art
distance score in single image 3D reconstruction.

1. Introduction
Our world is 3D, and so is our perception. Making ma-

chines see the world like us is the ultimate goal of computer
vision. So far, we have made significant advancements in
2D machine vision tasks, and yet 3D reasoning from 2D
still remains very challenging. 3D shape reasoning is of
the utmost importance in computer vision as it plays a vital
role in robotics, modeling, graphics, and so on. Currently,
given multiple images from different viewpoints, comput-
ers are able to estimate a reliable shape of the interested
object. Yet, when we humans look at a single 2D image,
we still understand the underlying 3D space to some extent
thanks to our experience, but machines are nowhere near
our perception level. Thus, a crucial yet demanding ques-
tion is whether we can help machines to achieve a similar

Figure 1. A sample showing what our model is capable of. (a)
An RGB input image. (b) A 2k-point. (c) A 40k-point clouds
produced by PCDNet. (d) A ground truth point cloud of the model.

3D understanding and reasoning ability of humans. At first,
a solution seems highly unlikely because some information
is permanently lost as we go from 3D to 2D. However, if a
machine is able to learn a shape prior like humans, then it
can infer 3D shape from 2D effortlessly.

Deep learning, or most of the time, deep convolutional
neural networks (CNNs), has recently shown a promising
learning ability in computer vision. However, there is not
yet an easy and efficient way to apply deep learning to 3D
reconstruction. Most modern progress of deep learning is
in areas where signals are ordered and regular – images, au-
dios and languages to name a few, while common 3D rep-
resentations such as meshes or point clouds are unordered
and irregular. Therefore, there is no guarantee that all the
bells and whistles from the 2D practice would work in the
3D counterpart. Other 3D structures may result in easier
learning such as grid voxels but at the cost of computational
efficiency. Also, quantization errors in these structures may
diminish the natural invariances of the data [23].

In this regard, we present a novel deep method to recon-
struct a 3D point cloud representation of an object from a
single 2D image. Even though a point cloud representation
does not possess appealing 3D geometrical properties like
a mesh or CAD model, it is simple and efficient when it
comes to transformation and deformation, and can produce
high-quality shape models [4].

Our insight into prior arts leads to the realization of sev-
eral key properties of the prospective system: (1) the model
should make predictions based on not only local features



but also high-level semantics, (2) the model should con-
sider spatial correlation between points, and (3) the method
should be scalable, i.e., the output point cloud can be of ar-
bitrary size. To inherit all these properties, we propose to
approach the problem in two steps: feature blending and
deformation. In the first step, we extract point-specific and
global shape features from the 2D input object image and
blend into the encoded feature of a randomly generated
point cloud. The per-point features are obtained by a sim-
ple projection of the point cloud onto the shape features ex-
tracted from the encoded image. For the global information,
we borrow an idea from image style transfer literature that
is conceptually simple and suited to our problem formula-
tion. The per-point and global features are processed by a
deformation network to produce a point cloud for the given
object. Despite the simplicity of the global shape feature,
its mere introduction already helps the proposed system to
outperform the state of the art.

To further improve on this baseline, in the deforma-
tion step, we introduce a new layer termed as GraphX
that learns the inter-relationship among points like common
graph convolutions [17] but can operate on unordered point
sets. GraphX also linearly combines points similar to X -
convolution [18] but in a more global scale. Armed with
more firepower, our model surpasses all the existing single
image 3D reconstruction methods and reduces the current
state-of-the-art distance metric to half. Finally, we show-
case that the proposed model can generate an arbitrary-sized
point cloud for a given object, which is the first deep method
to do so according to our knowledge. An example of the
predicted point clouds of a CAD chair model that our model
produces is shown in Figure 1. We dub the proposed method
Point Cloud Deformation NETwork (PCDNet) for brevity.

Our contributions are three-fold. First, we introduce
a new 3D reconstruction model which is the first to gen-
erate a point cloud representation of arbitrary size. Sec-
ond, we present a new global shape feature, which is in-
spired by image style transfer literature. The extraction op-
eration is a symmetric mapping, so the network is invari-
ant to the orderlessness of point cloud. Finally, we pro-
pose a new layer termed as GraphX which learns the inter-
connection among points in an unordered set. To facili-
tate future research, the code has been released at https:
//github.com/justanhduc/graphx-conv.

2. Related work
3D reconstruction is one of the holy grail problems in

computer vision. The most traditional approach to this
problem is perhaps Structure-from-Motion [25] or Shape-
from-X [1,22]. However, while the former requires multi-
ple images of the same scene from slightly different view-
points and an excellent image matching algorithm, the lat-
ter requires prior knowledge of the light sources as well as

albedo maps, which makes it suitable mainly for a studio en-
vironment. Some early studies also consider learning shape
priors from data. Notably, Saxena et al. [24] constructed a
Markov random field to model the relationship between im-
age depth and various visual cues to recreate a 3D “feeling”
of the scene. In a similar study, the authors in [7] learned
different semantic likelihoods to achieve the same goal.

Recently, deep learning, or most likely deep CNNs, has
rapidly improved various fields [5,6,8,11–15,21] including
3D reconstruction. Deep learning-based methods can re-
construct an object from a single image by learning the ge-
ometries of the object available in the image(s) and halluci-
nating the rest thanks to the phenomenal ability to estimate
statistics from images. The obtained results are usually far
more impressive than the traditional single image 3D recon-
struction methods. Wu et al. [32] employed a conditional
deep belief network to model volumetric 3D shapes. Yan
et al. [33] introduced an encoder-decoder network regular-
ized by a perspective loss to predict 3D volumetric shapes
from 2D images. In [31], the authors utilized a generative
model to generate 3D voxel objects arbitrarily. Tulsianni
et al. [29] introduced ray-tracing into the picture to pre-
dict multiple semantics from an image including a 3D voxel
model. Howbeit, voxel representation is known to be in-
efficient and computationally unfriendly [4,30]. For mesh
representation, Wang et al. [30] gradually deformed an el-
liptical mesh given an input image by using graph convolu-
tion, but mesh representation requires overhead construc-
tion, and graph convolution may result in computing re-
dundancy as masking is needed. There has been a number
of studies trying to reconstruct objects without 3D super-
vision [9,19,28]. These methods leveraged the multi-view
projections of the models to bypass the need for 3D super-
vising signals. The closest work to ours is perhaps Fan et
al. [4]. The authors proposed an encoder-decoder architec-
ture with various shortcuts to directly map an input image
to its point cloud representation. A disadvantage of the ex-
isting methods that directly generate point sets is that the
number of trainable parameters are proportional to the num-
ber of points in the output cloud. Hence, there is always
an upper bound for the point cloud size. In contrast, the
proposed PCDNet overcomes this problem by deforming a
point cloud instead of making one, which makes the system
far more scalable.

3. Point cloud deformation network
Our overall framework is shown in Figure 2. Given an

input object image, we first encode it by using a CNN to
extract multi-scale feature maps. From these features, we
further distill global and point-specific shape information
of the object. The obtained information is then blended into
a randomly generated point cloud, and the mixture is fed to
a deformation network. All the modules are differentiable,

https://github.com/justanhduc/graphx-conv
https://github.com/justanhduc/graphx-conv


Figure 2. Overview of PCDNet. The network consists of three separate branches. Image encoding: this branch (middle) is a CNN that
takes an input image and encodes it into multi-scale 2D feature maps. Point-specific shape information extraction: this branch (top), which
is parameter-free, simply projects the initial point set to the 2D feature maps at every scale to form point-specific features. Global shape
information extraction: the final branch (bottom) is an MLP that processes a randomly generated point cloud and 2D output features from
the CNN. The features and the 2D feature maps at the same scales are fed to an AdaIN operator to produce global shape features. All the
features plus the point cloud are concatenated and input to a deformation network.

ergo it can be trained end-to-end in any contemporary deep
learning library. In the following sections, we will describe
all the steps in details.

3.1. Image encoding

We use a VGG-like architecture [26] similar to [30] to
encode the input image (Figure 2 middle branch). The note-
worthy aspect of the architecture is that it is a feed-forward
network without any shortcut from lower layers, and it con-
sists of several spatial downsamplings and channel upsam-
plings at the same time. This sort of architecture allows
a multi-scale representation of the original image and has
been shown to work better than the modern designs with
skip connections when it comes to shape or texture repre-
sentation [20,30].

3.2. Feature blending

3.2.1 Point-specific shape information

Following [30], we extract a feature vector for each indi-
vidual point by projecting the points onto the feature maps
as illustrated in Figure 2 (top branch). Concretely, given an
initial point cloud, we compute the 2D pixel coordinate of
each point using camera intrinsics. Since the resulting co-
ordinates are floating point, we resample the feature vectors
using bilinear interpolation. Note that we reuse the same
image feature maps for both the projection and global shape
features.

3.2.2 Global shape information

The global shape information is obtained by the bottom
branch in Figure 2. To derive the global shape informa-

tion, we borrow a concept from image style transfer liter-
ature. Image style transfer concerns how a machine can
artistically replicate the “style” of an image, possibly color,
textures, pen strokes, etc., on a target image without over-
writing its contents. We find an analogy between this style
transfer and our problem formulation in the sense that given
an initial point cloud, which is analogous to the target im-
age in style transfer, we would like to transfer the “style”
of the object, which is the shape of the input object in our
case, to the initial point set. To this end, we propose to
“stylize” the initial point cloud by the adaptive instance nor-
malization (AdaIN) [8]. First, we process the initial point
cloud by a simple multi-layer perceptron (MLP) encoder
composed of several blocks of fully connected (FC) lay-
ers to obtain features at multiple scales. We note that the
number of scales here is equal to that of the image feature
maps, and the dimensionality of the feature is the same as
the number of the feature map channels at the same scale.
Let the set of ci-dimensional features from the MLP and the
2D feature maps from the CNN at scale i be Yi ⊆ Rci and
Xi ∈ Rci×hi×wi (ci channels, height hi, and width wi),
respectively. We define the 2D-to-3D AdaIN as

AdaIN(Xi, yj) = σXi

yi − µYi

σYi

+ µXi , (1)

where yj ∈ Yi is the feature vector of point j in the cloud,
µXi

and σXi
are the mean and standard deviation of Xi

taken over all the spatial locations, and µYi
and σYi

are the
mean and standard deviation of the point cloud in feature
space. The rationale of our definition is that from a global
point of view, an object shape can be described by a mean
shape and an associated variance. We can retrieve these



Figure 3. An illustration of GraphX. First, the new points nk are
computed by combining all the given points fi according to a mix-
ing weight. Then the new points are mapped from the current
space F to a new space Fo by W and activated by a non-linear
activation h(·). For brevity, biases are omitted.

mean shape and variance from the 2D input image, and then
embed them into the initial 3D point cloud after “neutraliz-
ing” it by removing its mean and variance. In Section 4.4,
we will demonstrate an experiment that reinforces our view.

3.2.3 Point cloud feature extraction

After extracting the global and per-point features, to obtain
a single feature vector for each point, we simply concate-
nate the two features together with the point coordinates.
We note that our feature extraction is somewhat similar to
that of PointNet [23] in the sense that both methods con-
sider global and per-point features as well as the symme-
try property of the global one. Like semantic segmentation
in [23], point cloud generation should rely on both local ge-
ometry and global semantics. Each point’s position is pre-
dicted based on not only its individual feature but also the
collection of points as a whole. More importantly, since the
global semantics do not change as the points are permuted,
the global feature must be invariant with respect to permu-
tation. While max pooling is adopted in [23], which makes
sense as the method emphasizes only on critical features to
predict labels, we use mean and variance here because they
characterize distribution naturally.

3.3. Point cloud deformation

We now proceed to the last phase of our method which
produces a point cloud representation of the input object
via an NN. In order to generate a precise and represen-
tative point cloud, it is necessary to establish some com-
munication between points in the set. The X -convolution
(X -conv) [18] seemingly fits our purpose as the operator is
carried out in a neighborhood of each point. However, be-
cause this operator runs a built-in K-nearest neighbor every
iteration, the computational time is prohibitively long when
the cloud size is large and/or the network has many X -conv
layers. On the other hand, graph convolution [17] consid-
ers the local interaction of points (or in this case vertices)

but unfortunately, the operator is designed for mesh repre-
sentation which requires an adjacency matrix. Due to these
shortcomings, an operator with a similar functionality but
having greater freedom is required to ensure efficient learn-
ing on unordered point sets.

In this paper, inspired by the simplicity of graph con-
volution and the way X -conv works, we propose graphX-
convolution (GraphX) which possesses a similar function-
ality as the graph convolution but works on unordered point
sets like X -conv. An intuitive illustration of GraphX is
demonstrated in Figure 3. The operation starts by mixing
the features in the input and then applies a usual FC layer.
Let Fj ⊆ Rdj be the set of dj-dimensional features fed to
jth layer of the deformation network. For notation simplic-
ity, we drop the layer index j and denote the output set as
Fo ⊆ Rdo . Mathematically, GraphX is defined as

f
(o)
k = h (nk) = h

WT (
∑
fi∈F

wikfi + bk) + b

 , (2)

where f (o)k is the kth output feature vector in Fo, wik, bk ∈
R are trainable mixing weight and mixing bias correspond-
ing to each pair (fi, f

(o)
k ), W ∈ Rd×do and b ∈ Rdo are the

weight and bias of the FC layer, and h is an optional non-
linear activation. The formulation of GraphX can be seen
as a global graph convolution. Instead of learning weights
for only neighboring points, GraphX learns for the whole
point set. This definition is based on our hypothesis that
in a point cloud, every point can convey more or less in-
formation about others, thus we can let the learning decide
where the network should concentrate. Still, learning a full
d× do weight matrix for each point like the graph convolu-
tion requires mammoth computer calculations. Therefore,
we break the weight into a fixed W for all the points and
an adaptive part, wik, which is just a scalar. Our method is
also similar to X -conv in the way it takes the relationship of
points into account, but while the mixing matrix of X -conv
is computed by a neural network from a locality of points,
ours is directly learned and works on the whole point set,
and hence capable of learning a local-to-global prior.

If the size of the point cloud is large, learning a mixing
operation is still potentially expensive. One workaround is
to start with a small point cloud, and then gradually upsam-
ple it in such a way that |Fo| > |F|. Thus, the computation
and memory can be reduced considerably. Alternatively,
GraphX can also be utilized in the downsampling direction
which is useful in point cloud encoding.

Following the trend of employing residual connection [6]
to boost gradient flow, we propose ResGraphX, which is
a residual version of GraphX. The main branch comprises
of an FC layer (activated by ReLU) followed by a GraphX
layer. As in [6], the residual branch is an identity when



the output dimension of the layer does not change, and an
FC layer otherwise. When the upsampling version of Res-
GraphX, which shall be called UpResGraphX, is utilized,
the residual branch has to be another GraphX to account
for the expansion of the point set. In the deformation net-
work, we employ three (Up)ResGraphX modules having
512, 256, and 128, respectively, and put a linear FC layer
on top. Kindly refer to the supplementary for more techni-
cal details.

4. Experimental results
Implementation details. We used Chamfer distance

(CD) to measure the discrepancy between PCDNet’s pre-
dictions and ground truths. For the sake of completeness,
we write the CD between two point sets X ,Y ⊆ R3 below

L(X ,Y) = 1

|X |
∑
x∈X

min
y∈Y
‖x− y‖22+

1

|Y|
∑
y∈Y

min
x∈X
‖y − x‖22.

(3)
The loss was optimized by the Adam optimizer [16] with a
learning rate of 5e-5 and default exponential decay rates. To
limit the function space, we incorporated a small (1e-5) L2
regularization term into the loss. We found that scheduling
the learning rate helped to accelerate the optimization at the
late stage, and so we multiplied it by 0.3 at epochs 5 and
8. Training ran for totally 10 epochs in 3.5 days on a single
NVIDIA TitanX 12GB RAM. Batch size of 4 was used in
all training scenarios.

At every iteration of the training, we initialized a random
point cloud so that given fixed camera intrinsics, the projec-
tion of the point cloud covers the whole image plane. We
used an initial point cloud of 2k points in all experiments if
not otherwise specified.

Data. We trained and evaluated our model on the
ShapeNet dataset [2]. ShapeNet is the largest collection of
3D CAD models that is publicly available. We used a sub-
set of the ShapeNet core consisting of around 50k models
categorized into 13 major groups. We utilized the default
train/test split shipped with the database. All the hyperpa-
rameters were selected solely based on the convergence rate
of the training loss. The rendered images and ground truth
point clouds were kindly provided by [3]. Different from
previous works, we used only grayscale images as we found
no clear benefit when using RGB.

Benchmarking methods. We pitted our PCDNet
against current state-of-the-art methods including 3D-R2N2
[3], point set generation network (PSG) [4], pixel-to-
mesh (Pixel2mesh) [30], and geometric adversarial network
(GAL) [10]. 3D-R2N2 aimed to provide a unified frame-
work for 3D reconstruction whether the problem is single-
view or multi-view by harnessing a 3D RNN architecture.
PSG is a regressor that directly converts an RGB image into

point cloud, which is the most similar method of the four
competing models. Pixel2mesh utilized the graph convolu-
tion to deform a predefined mesh into object shape given an
RGB input. Finally, GAL resorted to adversarial loss [5]
and multi-view reprojection loss in addition to CD to esti-
mate a representative point cloud.

PCDNet variants. We tested five variants of PCDNet:
(1) a naive model with an FC deformation network, (2) a
model with a residual FC (ResFC) deformation network, (3)
a model with GraphX, (4) a model with ResGraphX, and (5)
a model with UpResGraphX. For more details about the five
architectures, see the supplementary and our website.

Metrics. To make it easier for PCDNet to serve as a
baseline in subsequent research, we reported two common
metric scores which are CD and intersection over union
(IoU). CD is our main criterion, not because PCDNet is
trained using CD, but it is better correlated with human per-
ception [27]. IoU quantifies the overlapping region between
two input sets. Regarding IoU, we first voxelized the point
sets into a 32× 32× 32 grid and calculated the scores. We
note that while PSG learns how to voxelize to achieve the
best IoU and GAL is indirectly trained to maximize IoU, we
used a simple voxelization method in [9].

4.1. Comparison to state-of-the-art methods

4.1.1 Qualitative results

We start by comparing the results obtained by PCDNet and
PSG visually. The results are demonstrated in Figure 4. As
can be seen from the figure, even our naive formulation eas-
ily outperforms the competing method in all cases. While
the estimated point clouds from PSG are very sparse and
have high variance, those from PCDNet have pretty sharp
and solid shapes. Our models preserve both the appear-
ances and fine details much better thanks to the global and
per-point features embedded in our proposed method.

We also tested our best model, PCDNet-UpResGraphX,
on some real-world object images taken from Pix3D [27].
We applied the provided masks to the object images and let
the model predict the point cloud representations of the im-
ages. We also obtained the results from PSG by the same
way1. The scenario is challenging as the lighting and oc-
clusion are far different from the CG images. Nevertheless,
the results produced by PCDNet are surprisingly impres-
sive. Obviously, our predictions are much more reliable
as the shapes are precise and more recognizable than those
from PSG. We highlight that the objects that are not chair
or table are out-of-distribution as similar objects were not
included in training. This suggests that our method is ca-
pable of analyzing and reasoning about shapes, and not just
memorizing what it has seen during training.

1PSG provides a model taking the concatenation of image and mask as
input but the results are actually worse.



Figure 4. Qualitative performance of PSG [4] and different variants of PCDNet on ShapeNet. Our results are denser and more accurate
than those produced by PSG.

Figure 5. Qualitative performance of PSG [4] and PCDNet-UpResGraphX on some real life images taken from Pix3D. The predictions
from PSG have high variance compared to ours, which present clear and solid shapes.

4.1.2 Quantitative results

The metric scores of PCDNet versus others are tabulated in
Table 1. As anticipated, all PCDNet variants outrun all the
competing methods by a huge gap. Specifically, the average
CD scores from our simplest model (FC) is already twice
better than the state of the art. For IoU, our method still tops
the table and raises the performance bar which was previ-
ously set by GAL. Also, among all the variants of PCDNet,
the GraphX family obtains better CD scores than the base-
line whose deformation network is made of only FC lay-
ers. This is no surprise as GraphX is purposely architected
to model both the global semantics and local relationship
of points in the point cloud, which is necessary for char-
acterizing point sets [18,23]. On the other hand, a defor-
mation network with (Res)FC layers treats every point al-
most independently (points are processed independently in

the forward pass but gradients are collectively computed in
the backward pass), so the output coordinates are predicted
without conditioning on the semantic shape information nor
local coherence, which certainly degrades the performance.
Still and all, the gain in CD comes at the cost of lower IoU.
This might suggest that to get the best of both worlds, a
new loss function should be designed to simultaneously op-
timize the two metrics. A promising solution could be a
combination of CD and a reprojection loss as in [9] or [10].

To our surprise, the best performance is achieved by the
model using UpResGraphX. This is intriguingly interest-
ing because this model uses fewer parameters than other
members in the GraphX family. We measured the multiply-
accumulate (Mac) Flops for PCDNet-UpResGraphX2 and
Pixel2mesh3. Our model has only 1.91 GMac while

2Using https://git.io/fjHy9.
3Using tf.profile.

https://git.io/fjHy9


Table 1. Quantitative performance of different single image point cloud generation methods on 13 major categories of ShapeNet. “↑” indi-
cates higher is better. “↓” specifies the opposition. Best performance is highlighted in bold.

Category table car chair plane couch firearm lamp watercraft bench speaker cabinet monitor cellphone mean

CD↓

3D-R2N2 [3] 1.116 0.845 1.432 0.895 1.135 0.993 4.009 1.215 1.891 1.507 0.735 1.707 1.137 1.445
PSG [4] 0.517 0.333 0.645 0.430 0.549 0.423 1.193 0.633 0.629 0.756 0.439 0.722 0.438 0.593

Pixel2mesh [30] 0.498 0.268 0.610 0.477 0.490 0.453 1.295 0.670 0.624 0.739 0.381 0.755 0.421 0.591
Ours (FC) 0.314 0.220 0.333 0.127 0.289 0.128 0.560 0.30 0.211 0.471 0.310 0.275 0.181 0.286

Ours (ResFC) 0.305 0.216 0.321 0.123 0.284 0.123 0.543 0.228 0.204 0.474 0.309 0.272 0.181 0.276
Ours (GraphX) 0.299 0.192 0.317 0.123 0.265 0.127 0.549 0.214 0.202 0.433 0.272 0.258 0.159 0.262

Ours (ResGraphX) 0.291 0.188 0.313 0.120 0.259 0.124 0.529 0.214 0.199 0.430 0.275 0.257 0.159 0.259
Ours (UpResGraphX) 0.284 0.184 0.306 0.116 0.254 0.119 0.523 0.210 0.189 0.419 0.265 0.248 0.155 0.252

IoU↑

3D-R2N2 [3] 0.580 0.836 0.550 0.561 0.706 0.600 0.421 0.610 0.527 0.717 0.772 0.565 0.754 0.631
PSG [4] 0.606 0.831 0.544 0.601 0.708 0.604 0.462 0.611 0.550 0.737 0.771 0.552 0.749 0.640

GAL [10] 0.714 0.737 0.700 0.685 0.739 0.715 0.670 0.675 0.709 0.698 0.772 0.804 0.773 0.712
Ours (FC) 0.676 0.820 0.693 0.779 0.784 0.757 0.552 0.769 0.739 0.713 0.769 0.764 0.846 0.743

Ours (ResFC) 0.688 0.821 0.704 0.791 0.786 0.765 0.573 0.772 0.746 0.715 0.770 0.765 0.848 0.750
Ours (GraphX) 0.487 0.720 0.550 0.734 0.645 0.715 0.487 0.705 0.592 0.617 0.677 0.680 0.821 0.648

Ours (ResGraphX) 0.532 0.833 0.689 0.766 0.790 0.751 0.532 0.763 0.738 0.724 0.781 0.757 0.858 0.732
Ours (UpResGraphX) 0.605 0.819 0.663 0.758 0.770 0.747 0.516 0.754 0.725 0.708 0.770 0.735 0.857 0.725

Figure 6. Samples generated from interpolated latent representa-
tions of chair (top left), table (top right), car(bottom left), and air-
plane (bottom right).

Pixel2mesh has 1.95 GMac. From this result, the hypothe-
sis that the performance is boosted thanks to the additional
computing power can be ruled out. We conjecture that other
models slightly suffer from overfitting due to the large num-
ber of parameters. It is noted that the upsampling version
of GraphX is potentially useful in point cloud upsampling,
which covers the problem of point cloud densification.

4.2. Latent interpolation

In this section, the latent representation from the feature
extraction process is analyzed. We hypothesize that in order
for the deformation network to generate an accurate point
set representation, the latent must contain rich shape infor-
mation. To illustrate our point, we conducted an interpola-
tion experiment in latent space. We randomly chose four in-
put images and obtained their latent representations follow-
ing Section 3.2. Next, we synthesized a convex collection

of 64 latent codes using bilinear interpolation. Finally, we
decoded the codes and arranged the results in an 8× 8 grid
as shown in Figure 6. As can be seen, PCDNet smoothly
interpolates between objects, either between similar objects
such as chair and table or alien items like chair and airplane.
Some semantics are also preserved; for e.g., chair legs are
morphed into table legs. This proves that the network learns
a smooth function and can generalize well over the object
space, not simply putting mass on known objects.

4.3. Scalability of PCDNet and analysis of GraphX

To produce a dense point cloud, we batch several random
point clouds and input it to PCDNet along with the input
image. The outputs are then merged to obtain a unified point
cloud. This is possible thanks to the stochasticity introduced
by the random input cloud in each iteration during training.
Figure 7 shows off the scalability of PCDNet in which the
point number ranges from 2k to 40k. As can be seen, the
point cloud can be arbitrarily dense, unlike previous works
which always have an upper bound for the set size.

It can be noticed that the dense point clouds generated
by the GraphX-series models cluster, which we shall re-
fer to as clustering effect. One example of such effect is
shown in Figure 7 (rightmost). To understand the prob-
lem, we plotted the mixing matrix of a trained model and
observed an interesting phenomenon leading to the under-
standing of how GraphX probably works under the hood.
The image is shown in Figure 8 (a). The barcode-like im-
age suggests that apparently, GraphX lazily takes the mean
of all feature vectors, and then learns to scale and shift it
properly, which explains away the clustering effect. This
also reinforces the choice of the sum operator used in [34]
to aggregate information. We conducted an experiment to
verify this hypothesis and plotted the training curves in Fig-
ure 8 (b) (the hypothesized model is called UpResGraphXS-
lim.) Even though the hypothesis seems to work, it learns
much slower than the original version, and the gap between



Figure 7. Scalability of our method. Our model can produce arbitrarily dense point clouds by leveraging the stochasticity from the randomly
generated point cloud in training.
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Figure 8. (a) A mixing weight of a trained ResGraphX. (b) The
training curves of PCDNet (UpResGraphX) and the simplified ver-
sion (UpResGraphXSlim). Traning was terminated at epoch 5.

the two does not seem to be narrower as training advances.
We admit that our hypothetical view of GraphX is just the
tip of the iceberg, and there is still room for deeper theoret-
ical analyses in subsequent work.

4.4. Ablation study

Setup. For time consideration, we experimented with
only 5 major categories out of 13. Except for the ablated
feature, all the options and hyperparameters are the same as
in the main experiment.

Results. Table 2 and Figure 9 demonstrate the quanti-
tative and qualitative results of the ablation study, respec-
tively. As can be seen from the table, the models that in-
corporate only one feature (projection or AdaIN) achieves
roughly the same performance. The projection feature helps
PCDNet in CD score and AdaIN improves IoU. This can be
easily explained by the fact that projection is a per-point
feature that embraces the details of the shape, which is fa-
vored by a point-to-point metric like CD. On the other hand,
IoU measures the coverage percentage of two volumetric
models, which can be high when two objects have roughly
the same shape but not necessary all the subtleties. When
the two are combined, both the two scores are significantly
boosted, which validates our design of PCDNet.

The visualization in Figure 9 clearly illustrates the effect
of each feature on the predictions. While the AdaIN feature
helps our method to correctly model the global shapes (rec-
ognizable car and chair shapes), it lacks the information that
can provide fine details. This is exactly opposite to the pro-
jection feature when it can precisely estimate some intricate
model parts (for e.g., chair legs) but the overall appearances
are not as solid as those from AdaIN. The combination of

Table 2. Quantitative performance of PCDNet when different fea-
tures are ablated.

Category table car chair plane lamp mean

CD↓
Ours (projection) 0.637 0.284 0.490 0.177 0.670 0.452

Ours (AdaIN) 0.372 0.222 0.703 0.243 0.564 0.421
Ours (full) 0.301 0.195 0.319 0.124 0.550 0.298

IoU↑
Ours (projection) 0.540 0.818 0.657 0.704 0.501 0.644

Ours (AdaIN) 0.651 0.840 0.575 0.667 0.523 0.651
Ours (full) 0.694 0.844 0.725 0.750 0.566 0.716

Figure 9. Qualitative performance of PCDNet when different fea-
tures are ablated from the model. This figure reveals exactly the
contribution of each feature used in our formulation.

the two features provides a balance between fine details and
global view, which enables our method to top every bench-
mark.

5. Conclusion

In this paper, we presented PCDNet, an architecture that
deforms a random point set according to an input object im-
age and produces a point cloud of the object. To deform the
random point cloud, we first extracted global and per-point
features for every point. While the point-specific features
were obtained via projection following a previous work, the
global features were distilled by AdaIN, a concept borrowed
from style transfer literature. Having the features for each
point, we deformed the point cloud by a network consist-
ing of GraphX, a new layer that took into account the inter-
correlation between points. The experiments validated the
efficacy of the proposed method, which set a new height for
single image 3D reconstruction.
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